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Abstract

Lars Nagel – Randomised Load Balancing

Due to the increased use of parallel processing in networks and multi-core architectures, it

is important to have load balancing strategies that are highly efficient and adaptable to specific

requirements. Randomised protocols in particular are useful in situations in which it is costly to

gather and update information about the load distribution (e.g. in networks).

For the mathematical analysis randomised load balancing schemes are modelled by balls-into-

bins games, where balls represent tasks and bins computers. Ifm balls are allocated to n bins and

every ball chooses one bin at random, the gap between maximum and average load is known to

grow with the number of balls m. Surprisingly, this is not the case in the multiple-choice process

in which each ball chooses d ≥ 2 bins and allocates itself to the least loaded. Berenbrink et al.

proved that then the gap remains ln ln(n)
ln(d) .

This thesis analyses generalisations and variations of the multiple-choice process. For a

scenario in which batches of balls are allocated in parallel, it is shown that the gap between

maximum and average load is still independent of m. Furthermore, we look into a process in

which only predetermined subsets of bins can be chosen by a ball. Assuming that the number and

composition of the subsets can change with every ball, we examine under which circumstances

the maximum load is one. Finally, we consider a generalisation of the basic process allowing the

bins to have different capacities. Adapting the probabilities of the bins, it is shown how the load

can be balanced over the bins according to their capacities.
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1 Introduction

Load balancing has become a very important subject in computer science. The increasing use of

distributed and parallel computing in networks and multi-core architectures make it desirable to

further optimise the distribution of workload over computers or processors.

Despite all efforts and research, the widespread use of parallel systems had for a long time

been impeded by the exponential growth in processing speed. “Moore’s Law” – that the number

of transistors on an integrated circuit doubles every two years [67] – turned out to be accurate:

Parallel architectures quickly became obsolete, supercomputers of the preceding decade were

suddenly outrun by desktop computers [41]. The end of Moore’s Law was predicted several

times, but until today it has stubbornly prevailed for more than four decades.

Yet, now the voices are growing louder that the limit of downsizing chip components will

categorically be reached in the 2020s [41]. At some point it must inevitably come to an end

because the size of a transistor will certainly not fall below the size of an atom. An additional

obstacle is the increasing heat dissipation of processors [39]. Possible solutions like quantum

computers or reversible computing appear far away and would drastically change the current

computing model [70, 52, 5].

Therefore, multi-core processors and computer clusters will dominate the (near) future, and in

fact they already dominate if one considers the widespread use of server clusters in the worldwide

web and the sales figures on the computer market. Most (desktop / laptop) PCs currently sold

have multiple CPUs and tablets and smartphones follow this trend [81]. There remains a lack

of software, however, that makes use of several cores. For this, programs need to be split into

processes or threads which are then allocated to the different processors – a new challenge for

software developers.

As mentioned, another application area of efficient load balancing schemes are large networks

like the internet. Looking at the client-server model, the requirements have changed over the

years. Until the mid-90s a single server could handle all requests sent to a popular website while

nowadays “there are often dozens or hundreds of servers operating behind a single URL” [16].

Any imbalance in the load distribution will affect the system’s throughput and latency.
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A further challenge is to find strategies that also cope with additional requirements. Load

balancing in distributed and cloud computing, for instance, may be complicated by the structure

of the network. If the computers are widespread over the network, the latency between client and

server or peers, respectively, is an issue.

The subject of this thesis is randomised load balancing. This type of load balancing can be

applied if there is not enough information available about the global state of the system or if it is

difficult or expensive to gather it. A lack of information is usually not a problem in multi-core

PCs so that deterministic load balancing schemes should be applied there. Nevertheless, this does

not necessarily imply that an optimal strategy can be found. In his famous paper “Reducibility

among combinatorial problems” Karp showed that deterministic load balancing of weighted tasks

is an NP-hard problem, even in case of only two processors (see PARTITION problem in [44]).

In networks, on the other hand, it can be costly to gain global information on the load of

each server or peer and keep it updated. It would bind resources and lead to a communication

overhead which should be avoided in networks. Even if the dispatcher reduced its load enquiries

to a minimum, it would still be a weak point in the system and could easily become a bottleneck.

The randomised allocation of requests to servers can help to overcome such difficulties and

communication overhead. The dispatcher or the client itself needs only a list of server addresses

from which it picks one at random. If the server structure is not too dynamic, this list can even be

stored locally so that the client does not have to retrieve it for every request. The crucial question

is whether random load balancing schemes do their job sufficiently well and whether they are

adaptable to additional requirements if necessary.

For the mathematical analysis load balancing schemes are modelled by balls-into-bins games.

Balls-into-bins games are also known as allocation processes or occupancy models and have a

long history in mathematics and natural sciences [40]. In the client-server scenario the servers

are represented by bins and the requests by balls. The allocation of the balls to the bins follows

a randomised protocol. The analysis focuses on the load distribution and often merely on the

maximum load.

Let m denote the number of balls and n the number of bins. In the most basic setting (i) all

balls and bins have unit size, (ii) balls are only added, but not deleted, and (iii) each of the m

balls simply chooses one of the n bins at random and allocates itself to it. It is well-known (see

e.g. [74]) that then the gap between maximum and average load grows with the number of balls

m. Surprisingly, if every ball has two random choices and selects the bin of lower load, the

number of balls above the average is O(ln ln(n)) and, thus, independent of m [8].

The idea of allowing balls multiple choices was first described and analysed by Karp et al. [45]

11
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and Azar et al. [3]. Their work sparked new interest in balls-into-bins games and led to many

variations modelling diverse applications. Load balancing is only one of them.

The problem of the multiple-choice approach is that it is basically sequential. The allocation

of the current ball depends on the positions of the previous balls. Since many applications

modelled by balls-into-bins games – especially load balancing in networks – are in fact parallel,

several attempts were made to parallelise the algorithm [2, 61, 82, 12, 1]. In Chapter 5 we

will investigate how the standard multiple-choice algorithm performs in a parallel environment.

There we will assume that the balls arrive in batches of size n and that the balls of each batch are

allocated concurrently.

Another generalisation of the basic process assumes that the balls are weighted. Translated

into the client-server model, this means that requests can have varying sizes or running times.

Evidently, the same could hold true for the servers. When, for example, a cluster of servers

is extended by new machines, then the new servers will often have differing properties such

as memory size and processing speed. It is then desirable to assign more work to the better

computers. In Chapter 3 we will look into the related balls-into-bins game in which the bins

have different capacities. We will show how altering the bins’ probabilities helps to balance

the load.

While games with different bin capacities have previously not been analysed, there are a few

papers regarding allocation processes in which the bins’ probabilities are not uniform. Byers et

al. [17, 18], for example, apply the multiple-choice paradigm to improve consistent hashing as it

is used in peer-to-peer networks like Chord, where some probabilities deviate from the average 1
n

by a factor of ln(n).

In Chapter 4 we will consider another scenario in which the bins’ probabilities are non-

uniform and dependent. In this model the servers are grouped in possibly overlapping clusters.

A request is not sent to a single bin, but to a random cluster which then allocates the ball to its

least loaded bin. We assume that the number and composition of the clusters can change with

every ball and show bounds on the maximum load.

1.1 Notation and Terminology

In this section we provide basic definitions and lemmas that will be used throughout the thesis.

More special notation will be given where it is needed in the individual chapters.

We assume that the reader is familiar with the basic concepts of combinatorics and probability

12
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theory that are used in the analysis of randomised algorithms. Good introductions into this field

are [78, 68, 66].

1.1.1 Basic Definitions

As customary we denote the real numbers with R and the positive real numbers including 0 with

R+ := {x | x ∈ R ∧ x ≥ 0}. Let a, b ∈ R. The open interval is denoted with (a, b) := {x | x ∈

R ∧ a < x < b}, the closed interval with [a, b] := {x | x ∈ R ∧ a ≤ x ≤ b} and the half-closed

intervals with [a, b) := {x | x ∈ R ∧ a ≤ x < b} and (a, b] := {x | x ∈ R ∧ a < x ≤ b},

respectively. The set of natural numbers N contains all integer numbers strictly greater than 0.

For n ∈ N, [n] denotes the set {1, 2, . . . , n}.

In Definition 1.2.7 and in Chapter 3 we will refer to normalised vectors:

Definition 1.1.1 (Normalised vector). Let v = (v1, ..., vn) be any vector in Rn. Then the

normalised vector v̄ = (v̄1, ..., v̄n) consists of the elements of v in decreasing order.

In the analysis of the protocols we will use the big-O-notation (see e.g. [78]).

Throughout the thesis we say that an event A occurs with high probability, or w.h.p., if

Pr [A ] ≥ 1 − n−α for some constant α > 0, and it occurs with with very high probability,

or w.v.h.p., if Pr [A ] ≥ 1− n−α for any constant α > 0.

Since the binomial distribution will be frequently used, the following lemma summarises a

few well-known properties (see e.g. [78, 66]):

Lemma 1.1.2 (Binomial distribution). LetXi, i ∈ [n], be binary random variables (or Bernoulli

experiments) that have the same success probability p := Pr [Xi = 1 ] and failure probability

1−p = Pr [Xi = 0 ]. ThenX =
∑n
i=1Xi is binomially distributed, and we writeX ∼ B(n, p).

The expected value is E[X] = n · p, the variance Var[X] = n · p · (1− p).

The probability for at least k successes is

Pr [X ≥ k ] =

n∑
j=k

(
n

j

)
· pj · (1− p)n−j ≤

(
n

k

)
· pk ≤

(e · n · p
k

)k
.

We will also make use of the following well-known lemmas:

Lemma 1.1.3 (Geometric series; see [50], page 59). If x ∈ R and |x| < 1, then

∞∑
k=0

xk =
1

1− x
.
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Lemma 1.1.4 (Property of the exponential function; see [50], page 111). For all x ∈ R and

n > 0, (
1 +

x

n

)n
≤ ex.

Lemma 1.1.5. For all x > 0,

1

x+ 1
< ln(x+ 1)− ln(x) <

1

x
.

Proof. Since ln is a strictly concave function, it holds for h 6= 0 that

ln(x+ h)− ln(x) < h · (ln(x))′ = h · 1

x

(see e.g. [50], page 166). The first inequality follows from setting h = −1 and multiplying

by −1, the second inequality from setting h = 1.

1.1.2 Graphs

Occasionally we will mention undirected graphs and hypergraphs. Only definitions relevant for

this thesis are given here; for a comprehensive introduction see [25, 78]. Most of the definition

in this Section are based on [25].

A (simple) graph G = (V,E) is an ordered pair of sets V and E where V is the non-empty

set of vertices and E is the set of edges. An edge is a set {u, v} of two vertices u, v ∈ V . If

{u, v} ∈ E, then u and v are called adjacent. Define e := {u, v}, then we say that u and v are

incident to e. The order of a graph is the number of vertices, usually denoted by n := |V |. A

multigraph is an extension of the simple graph that allows for multiple edges; i.e.,E is a multiset.

The neighbourhood N(v) of a vertex v ∈ V is the set of vertices that v is adjacent to. The

degree d(v) of vertex v is the number edges v is incident to. In simple graphs the degree equals

the size of the neighbourhood. A graph G = (V,E) is called regular if all vertices v ∈ V have

the same degree. In a ∆-regular graph all vertices have degree ∆.

G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊂ V , E′ ⊂ E and if {u, v} ∈ E′

implies u, v ∈ V ′. G′ is an induced subgraph if additionally {u, v} ∈ E and u, v ∈ V ′ imply

{u, v} ∈ E′. A walk is an alternating sequence of vertices and edges, starting and ending with a

vertex, such that each edge connects the preceding vertex with the succeeding vertex. The length

of a walk is the number of edges in its sequence. A path is a walk in which the vertices (and

edges) are pairwise distinct. A cycle is defined as a path whose sequence is extended by an edge

that connects the start and end vertex of the path. Two vertices u, v ∈ V are connected if there

14
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exists a path between u and v. The distance between two vertices is the length of the shortest

path between them. A graph is connected if each two vertices are connected.

A tree is a cycle-free, connected graph. Vertices of degree 1 are called leaves; all other vertices

are inner vertices of the tree. If one fixed vertex of a tree is labelled as the root, then the tree is

also called a rooted tree. Consider the path from the root to any leaf and fix any vertex v on this

path. The vertex preceding v is called the parent of v, the parent’s parent the grandparent of v and

so on. The vertex succeeding v is a child of v, the vertex succeeding the child v’s grandchild, and

so on. As there is only one path from the root to v (otherwise the graph would not be cycle-free),

v has exactly one parent, unless v itself is the root (then it has no parent). On the other hand, v

can have any number of children. If v has no children, then v is a leaf. The depth of a vertex is

the length of the path from the root to this vertex. The height of a tree is the maximum depth in

the tree. A rooted tree is a k-ary tree if every inner vertex has exactly k children.

A graph is bipartite if the vertex set V can be partitioned into two sets V1 and V2 such that

the vertices of every edge {u, v} ∈ E are in different sets. Thus, either u ∈ V1 and v ∈ V2 or

u ∈ V2 and v ∈ V1.

A hypergraph G = (V,E) is a generalisation of a graph and specified by a set V of vertices

and a set E of hyperedges. A hyperedge is a non-empty set of vertices whose size is not

restricted. Thus, it can connect any number of (distinct) vertices. Similar to multigraphs, in

a multi-hypergraph E is a multiset. A hypergraph or multi-hypergraph is d-uniform if every

hyperedge in E consists of exactly d vertices.

1.1.3 Randomised Algorithms

A randomised algorithm is an algorithm that makes decisions during its execution that depend

on random numbers (or bits). Therefore, these algorithms are non-deterministic in nature, and,

if run on the same input twice, their behaviour can differ. This can concern the sequence of

operations, the running time and, dependent on the type of algorithm, even the return value.

Ideally the random numbers are provided by a device or program that generates perfectly

random numbers without delay. Hardware solutions that generate random numbers from physical

processes approximate this idea. However, for the majority of applications pseudo-random num-

ber generators, implemented in software, are also sufficient. In the analytical sections we assume

perfect randomness, whereas the simulations described in Section 3.4 have been implemented

and executed using the pseudo-random number generator “Mersenne Twister” [59].

A great advantage of randomised algorithms lies in their robustness against unfavourable in-

15



www.manaraa.com

1 Introduction

puts which leads to expected running times that are often much better than the worst case running

times of comparable deterministic algorithms. Even though the concept of randomisation appears

more complicated at first glance, randomised algorithms are often not only more efficient than

deterministic algorithms, but also easier to understand and to implement [68]. Unfortunately the

same does not hold for the analysis of these algorithms which may be more complicated than in

the deterministic case.

In the subsequent chapters we investigate randomised protocols for balls-into-bins processes

in which balls are randomly allocated to a set of bins. Here, we are not interested in running

times, but in the distribution of the balls over the bins.

1.1.4 Balls-into-bins Games

A balls-into-bins game is defined by a set of balls, a set of bins and a (randomised) protocol

that describes how the balls are allocated to the bins. Balls-into-bins games are also known as

occupancy models or allocation processes. The number of balls is denoted by m and the number

of bins by n. We will consider the basic setting first in which all balls and bins have unit size.

Further below we will explain processes with weighted balls and bins.

The load of a bin is the number of balls it contains. Assuming that balls are allocated

sequentially, a ball’s height or level is the load of the selected bin right after the allocation.

Thus, one can picture the bin as a stack of balls and every new ball is simply put on top of the

stack. If balls arrive at the same time, then we nevertheless assume that they are added to the

stack one after the other (in an arbitrary order) so that each ball has a unique height.

The load distribution describes how the balls are distributed over the bins. The load vector

of an allocation of balls into n bins is a vector L = (`1, ..., `n) where `i is the load of bin i.

The normalised load vector L̄ consists of the loads of L in decreasing order. This complies with

sorting the array and renaming the bins according to their new positions.

In the d-choice game each ball chooses d bins at random and commits itself to one of the least

loaded. In case d = 1, we will also speak of a single-choice game, in case d ≥ 2, of a multiple-

choice game. As there can be more than one least loaded bin, a tie-breaking mechanism must be

defined. If not stated otherwise, we assume that bins are chosen independently and uniformly at

random (i.u.r.) and that ties are broken arbitrarily. We call this the standard d-choice game and

the protocol GREEDY[d], following Azar et al. [3].

The access graph depicts the possible choices of the balls [12, 30]: The bins are represented

by the vertices of the graph, the balls by the (hyper)edges, each connecting the d chosen bins of a
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ball. The access graph is labelled if the vertices and edges are labelled with the IDs or properties

of the bins and balls, respectively. Otherwise it is unlabelled.

A protocol is sequential if one ball is thrown after the other and the loads are updated after

each ball. Different parallel models are described in the literature [2, 61, 82, 12, 1, 29]. Some

of them assume that all balls arrive at the same time (static model), others that the balls arrive

in batches of a fixed size (dynamic model). Some of them allow for a possibly limited number

of additional communication rounds in which the balls and bins can exchange messages, others

do not. During a communication round every ball can send one message to each chosen bin, and

every bin can send one message to each ball it was chosen by. The permitted communication lines

are represented by the communication graph, a bipartite graph whose two vertex sets represent

the balls and bins, respectively, and whose edges connect balls with their chosen bins.

A distributed load balancing strategy is non-adaptive if all choices are made before any

communication takes place. A strategy is symmetric if all balls and bins run the same protocol

and if all choices are made i.u.r. It is asynchronous if a ball or bin does not have to wait for other

balls and bins to receive a message. A synchronous protocol has at least one synchronisation

point when all balls and bins have to wait for a round to finish. This implies some kind of

coordination, some notion of global time [2].

We speak of a finite or fixed time process if the number of balls is limited; otherwise it is

infinite [3, 1]. The finite process is analysed for a fixed time that is known in advance whereas

the infinite process performs arrivals and (possibly) deletions of balls over an infinite time line.

Note that the bins do not have to be empty at the beginning and that it can help during the analysis

to divide a process into finite sub-processes, especially if the balls are already grouped in batches.

The waiting time of a ball is the time (i.e., number of rounds) between its arrival in the system

and its processing / deletion. The service time defines how much time a bin needs to process /

delete one ball. Normally it takes one time step.

In the d-choice game, as we have described it, each bin has the same uniform probability 1
n to

be the i-th choice of a ball, for all i ∈ [d]. (Naturally the bins’ probabilities to receive the ball are

different in the multiple-choice game because they depend on the current load distribution.) One

evident generalisation of the d-choice game allows for different probability distributions over the

bins.

Another variation of balls-into-bins game allows that the balls have integer weights. The load

of a bin is then defined as the added weights of the balls in it. As before, the height of a ball is

defined as the bin’s load immediately after the allocation.

In Chapter 3 we will consider the game in which the balls have unit size, but the bins have
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different integer capacities. The load of a bin with capacity c is the number of balls in the bin

divided by c. The probabilities of the bins will be adapted so that bins with higher capacities are

more likely to receive balls. For a more detailed description see Section 3.2.

1.2 Proof Techniques

For the analysis of balls-into-bins games several proof techniques have been employed. Most

of them are widely used in probability theory and computer science and certainly not restricted

to allocation processes. We give an overview and describe the ones in detail that we use in the

following chapters.

1.2.1 Tail Bounds

Parameters like the running time of a randomised algorithm or the maximum load in an allocation

process are random variables. In many cases it is desirable to prove that, w.h.p., a parameter

takes a value that is smaller or greater than a certain bound. Such results are possible because

very often the parameters are “concentrated” around their expected value. This means that, for a

parameter X , there exists an interval I with E[X] ∈ I such that the probability Pr [X ∈ I ] is

(very) high. This phenomenon is referred to as the concentration of measure [27].

Several tools have been developed to prove tail bounds, i.e., bounds on Pr [X 6∈ I ]. The tails

are the areas far from the expected value: If I = (a, b), then {x | x ∈ R ∧ x ≤ a} is referred

to as the lower tail and {x | x ∈ R ∧ x ≥ b} as the upper tail [80]. Accordingly, bounds on the

probabilities Pr [X ≤ a ] and Pr [X ≥ b ] are called lower and upper tail bounds.

Among others available tools are Chernoff bounds and the inequalities of Markov, Chebyshev,

Hoeffding and Azuma (see e.g. [68, 66]). Even though all these bounds are based on Markov’s

inequality, they have different requirements. The inequalities of Markov and Chebyshev are

relatively weak, but generally applicable. The other bounds are stronger, but restricted to mar-

tingales (Azuma), sums of independent and bounded random variables (Hoeffding) or sums of

independent (or negatively correlated [72]) Bernoulli distributed random variables (Chernoff).

Tail bounds are frequently used in the analysis of balls-into-bins games; for instance, mar-

tingales in [18], Chernoff bounds in [3] and Markov’s inequality in [9]. We will apply different

types of Chernoff bounds, also a variation for geometrically distributed random variables.
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Lemma 1.2.1 (Chernoff bounds; Theorem 4.4 and 4.5 in [66]). Consider n independent random

Bernoulli variables X1, . . . , Xn with Pr [Xi = 1 ] = pi and Pr [Xi = 0 ] = 1 − pi for all

1 ≤ i ≤ n. Let X :=
∑n
i=1Xi and µ := E[X] =

∑n
i=1 pi. Then, for 0 < ε ≤ 1,

Pr [X ≥ (1 + ε) · µ ] ≤
(

eε

(1 + ε)1+ε

)µ
≤ e−ε

2·µ/3

and, for 0 < ε < 1,

Pr [X ≤ (1− ε) · µ ] ≤
(

e−ε

(1− ε)1−ε

)µ
≤ e−ε

2·µ/2.

As mentioned before, the Bernoulli random variables do not have to be independent. It

suffices if they are negatively correlated.

Definition 1.2.2 (Negative correlation [72]). Let X1, . . . , Xn be binary random variables. They

are negatively correlated if

Pr

[∧
i∈I

Xi = 1

]
≤
∏
i∈I

Pr [Xi = 1 ]

for all I ⊆ [n].

Lemma 1.2.3 (Chernoff bounds, negative correlation [72]). Let X1, . . . , Xn be binary random

variables, let X :=
∑n
i=1Xi and µ := E[X]. If X1, . . . , Xn are negatively correlated, then, for

ε ∈ (0, 1),

Pr [X ≥ (1 + ε) · µ ] ≤
(

eε

(1 + ε)1+ε

)µ
≤ e−ε

2µ/3.

The following lemma states a variant of Chernoff-type bounds for geometrically distributed

variables (see e.g. Theorem 3.2 in [36]). For completeness we give the proof of this result.

Lemma 1.2.4 (Chernoff bounds for geometrically distributed variables, [27, 36]). Let

Y1, Y2, . . . , Yt be a collection of t independent geometrically distributed random variables with

Pr [Yi = j ] = (1− p)j−1 · p and constant parameter p, 0 < p < 1. Then

Pr [Y > (1 + δ) · E[Y ] ] ≤ e−
t
2 ·

δ2

1+δ

where δ > 0 and Y = Y1 + Y2 + · · ·+ Yt.
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Proof. Let Xi, i ∈ N, be binary random variables with Pr [Xi = 1 ] = p and Pr [Xi = 0 ] =

1− p. It is well-known, see e.g. [27], that for all j ∈ N,

Pr

[
t∑
i=1

Yi ≤ j

]
= Pr

[
j∑
i=1

Xi ≥ t

]
. (1.1)

This will allow us to use Chernoff bounds.

The expected value of Y is E[Y ] =
∑t
i=1 E[Yi] = t

p . Let X =
∑d(1+δ)E[Y ]e
i=1 Xi. Then

E[X] = d(1 + δ)E[Y ]e · p ≥ (1 + δ) · t. Furthermore, let ε := 1 − t
E[X] . Then 0 < ε < 1 and

Pr [X < t ] = Pr [X < (1− ε) · E[X] ].

Applying (1.1) and Lemma 1.2.1, we get:

Pr [Y > (1 + δ) · E[Y ] ] = Pr [X < (1− ε) · E[X] ]

≤ exp

(
−E[X]

2
· ε2
)

= exp

(
−E[X]

2
·
(

1− t

E[X]

)2
)

≤ exp

(
− (1 + δ) · t

2
·
(

1− t

(1 + δ) · t

)2
)

= exp

(
− (1 + δ) · t

2
·
(

δ

1 + δ

)2
)

= exp

(
− t

2
· δ2

1 + δ

)

1.2.2 Coupling and Majorisation

In this thesis we will only consider balls-into-bins processes in which the allocation of a ball

depends on the current state of the load vector, but not on previous states. Therefore we can

regard these processes as Markov chains1: The state space is the set of load vectors, and the

probabilities of the transitions are given by the load balancing protocol.

The coupling of Markov chains is a technique to compare random processes with each other.

It has many applications in computer science and probability theory (broad expositions are given

in [53, 86]). We will couple allocation processes and compare their load vectors. In all instances

our aim is to show that the maximum load of one process is stochastically dominated by the

maximum load of the other process.

1A Markov chain is a stochastic process (Xt) = {Xt | t ∈ N} in which the transition probabilities only depend on the
current state (see definitions given in [68, 66]).
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Definition 1.2.5 (Stochastic dominance). Let X and Y be random variables whose co-domain

is some topological space E on which a partial order is defined. Then X is stochastically

dominated by Y if E[f(X)] ≤ E[f(Y )] for all monotonically increasing functions f : E → R.

In the special case that X and Y are real-valued random variables, X is stochastically

dominated by Y if Pr [X ≤ a ] ≤ Pr [Y ≤ a ] for all a ∈ R.

Definition 1.2.6 (Coupling, order-preserving coupling [54]). A coupling of two Markov chains

(Xt) and (Yt) with state space S is a Markov chain (Zt) = ((Xt), (Yt)) on the state space S×S

such that:

Pr [Xt+1 = x′ | Zt = (x, y) ] = Pr [Xt+1 = x′ |Xt = x ]

Pr [Yt+1 = y′ | Zt = (x, y) ] = Pr [Yt+1 = y′ | Yt = y ]

Let �∗ be a partial order relation on S and let K := {(x, y) ∈ S × S | x �∗ y}. Further,

let Prz [Zt ∈ K ] denote the probability for Zt ∈ K given that (Zt) starts from z ∈ K. The

coupling (Zt) is order-preserving if Prz [Zt ∈ K ] = 1 for all t > 0.

After coupling (Xt) and (Yt), both Markov chains behave exactly as before. The only

difference is that their random decisions are coupled. Regarded as randomised algorithms, it

is like using the same random number in both chains to determine the next step. Thus, in order

to define a coupling we only have to specify a bijective mapping between the random choices for

each pair of states. We will do this in Lemma 3.3.3 and Observation 4.3.4.

After establishing a method to couple allocation processes, we still need a method to compare

load vectors with each other. We will use majorisation [58] which defines a partial order relation

on Rn based on the normalised representation of the vectors (Definition 1.1.1):

Definition 1.2.7 (Majorisation �). Given two vectors p = (p1, . . . , pn) and q = (q1, . . . , qn)

in Rn, we say that p majorises q if and only if for all k = 1, . . . , n

k∑
i=1

p̄i ≥
k∑
i=1

q̄i

where p̄i and q̄i are the i-th entries of the normalised vectors p̄ and q̄, respectively2. We then

write p � q.

Observation 1.2.8. Let LA and LB be the load vectors of the allocation processes A and B.

Then LA � LB implies that the maximum load in A is not smaller than the maximum load in B.
2Note: Our definition actually complies with the definition of weak majorisation in the literature. According to [58] q

is (properly) majorised by p only if additionally
∑n

i=1 p̄i =
∑n

i=1 q̄i. We ignore this condition.
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Observation 1.2.9. Majorisation is a partial order relation on Rn.

Lemma 1.2.10 (by Kamae et al. [42, 54]). Let (Xt) and (Yt) be two Markov chains with state

space S where S is a partially ordered Rn. Let (Zt) = ((Xt), (Yt)) be a coupling starting from

z = (x, y) and �∗ the partial order relation on S. If x �∗ y and if (Zt) is order-preserving,

then Xt is stochastically dominated by Yt for all t > 0.

In the context of balls-into-bins games: (Xt) and (Yt) are allocation processes, S = Rn, and

x and y are the initial load vectors. If x is majorised by y and if (Zt) is order-preserving, thenXt

is stochastically dominated (under majorisation) by Yt for all t > 0. In particular, this implies

that the maximum load is also stochastically dominated.

In Lemma 3.3.3 we will use the following claim to show that a coupling is order-preserving.

Claim 1.2.11 (by Wieder, Claim 2.4 in [94]). Let x and y be two normalised integer vectors such

that x � y. If i ≤ j then x+ ei � y + ej where ei is the i-th unit vector and x+ ei and y + ej

are normalised.

1.2.3 Layered Induction

Layered induction is a technique that was first used in [3] by Azar, Broder, Karlin and Upfal.

They consider the d-choice game in which n balls are thrown into n bins and show that the

maximum load is upper-bounded by ln ln(n)
ln(d) +O(1), w.h.p. In the proof they bound the number

µk of bins that have at least k balls for all levels k ≥ 1 using an induction on k. The induction

base, for k = 1, ..., 5, is easily established by setting the bounds to n. For the induction step

k → k + 1, they assume that the bound holds for µk and use this to estimate µk+1.

Later in [8, 63] this technique was termed layered induction. It was applied in [19, 8, 18]. A

detailed description is given in [63].

1.2.4 Witness Trees

Witness trees are employed in different contexts. Concerning load balancing they are especially

useful in the analysis of d-choice balls-into-bins games in which each ball allocates itself to the

least loaded of d randomly chosen bins. Generally the technique embodies the following idea:

In order to show that a certain event does not occur or only occurs with low probability, one

proves that the event implies certain requirements and that it is impossible or unlikely that these

requirements are fulfilled. In our example the event is that the load of any bin exceeds a certain
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threshold `. It is then to show that such an event implies the presence of a witness tree and that

the probability for the existence of such a tree is small, given that ` is large enough.

Pursuing the example, we define a witness tree T to be a full d-ary rooted tree of height ` in

which each vertex represents a ball. Let b be any inner vertex. The d children of b are the topmost

balls of the d bins probed by b, i.e., the topmost balls before the allocation of b.

Given the event that one bin contains (at least) `+1 balls, it is easy to show that such a witness

tree T exists: As the root br we choose the (or a) ball on level ` + 1. The balls represented by

children of br must have height at least ` because they were the topmost balls in their bins when br

was allocated and br was thrown into the least loaded bin. Accordingly, the balls represented

by br’s grandchildren must have height at least `− 1, and so on. As the balls represented by the

leaves have height 1, this recursive argument yields that T has indeed height at least `.

While taking care of the dependencies, it remains to show that the probability for the existence

of a witness tree is small. Roughly, this is achieved by multiplying the number of all possible

witness trees with the probability that a particular tree exists. For a detailed analysis see [88, 63].

Witness trees were introduced in [60] by Meyer auf der Heide, Scheideler and Stemann.

Mitzenmacher et al. assess them as the most “challenging” technique, but also as the one that

tends “to provide the strongest results” [63]. Witness trees are used in [22, 19, 20, 88]. A

summary of examples and results is provided in [63].

1.2.5 Further Techniques

For the analysis of balls-into-bins games further techniques have been adopted. Beside layered

induction and witness trees Mitzenmacher et al. count fluid limits via differential equations

to “the three major techniques” [63]. Assuming n → ∞, this technique aims to describe the

behaviour of the system by differential equations, to solve them and, so, to gain results – which

hopefully also hold for the finite case.

Another technique that is particularly useful in the analysis of load balancing schemes is the

Poisson approximation for binomially distributed random variables: The binomial distribution

plays a prominent role in d-choice balls-into-bins games. So is, for example, the number of

times that a fixed bin is probed binomially distributed. As for sufficiently small p and large n the

Poisson distribution is the limit of the binomial distribution, it can often be used instead and help

to avoid dependencies [66]. Good accounts of the Poisson approximation are given in [80, 66].

It is employed in [35, 2, 62, 23, 29], among other things for bounding the maximum load in the

single-choice balls-into-bins game [35, 62]. (However, Raab and Steger claim in [74] that the
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Poisson approximation can only be applied if mn is constant. They utilise the first and the second

moment method to derive tight bounds for the remaining cases.)

1.3 Thesis Overview

The subject of this thesis is randomised load balancing. Chapter 3 and 4 are based on research

papers [7, 6] while the results of Chapter 5 have not been published before. Each of these chapters

begins with an introduction that illuminates the context of the results and provides more specific

definitions not covered in Section 1.1. Open problems and summaries are given in a conclusion

at the end of each chapter.

Before the new results are discussed in the Chapters 3 to 5, Chapter 2 will provide an extensive

overview of the work published in this area. We will point out the key results that are relevant

for this thesis.

Chapter 3 considers a generalisation of the standard multiple-choice process in which the bins

have different capacities (or speeds) and their loads are defined as the number of balls divided

by the capacity. Although Wieder mentions such a game in [94] and suggests to choose the bins’

probabilities proportional to their capacities, this type of balls-into-bins game has previously not

been analysed.

The balls-into-bins game in Chapter 4 assumes the bins to be clustered. A ball chooses one

random cluster of size d (instead of d single bins) and is then allocated to a bin of lowest

load within the cluster. The model was introduced by Godfrey in [34] and allows the cluster

set to change with every ball – provided that it fulfils certain requirements. We relax these

requirements, improve Godfrey’s results and simplify the proof.

Chapter 5 investigates GREEDY[d] in the dynamic parallel model. The difference to the

standard d-choice game is that the balls arrive in batches of size n and that the loads of the bins

are not updated before all n balls have been allocated. For m ≤ poly(n) we show that, w.v.h.p.,

the maximum load above the average is O(ln(n)) and therefore independent of the number of

balls.
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This chapter provides an overview of the related work and describes applications. We will focus

on balls-into-bins games in various settings and give an overview of their (recent) history. This

sums up the work that is related to the results in the subsequent chapters.

Like urn problems where balls are drawn from urns, balls-into-bins games belong to the urn

models. They are also known as allocation processes or occupancy problems and model the

random allocation of m balls into n bins under various conditions. These conditions include

different probability distributions over the bins as well as weighted balls or bins. In the following

sections we will describe a few of these modifications and extensions.

It is difficult to date back the origins of balls-into-bins games, but there are references in de

Moivre’s “Doctrine of Chances” as early as 1718 [24, 40]. As a model in theoretical physics

they were studied in more detail in the 19th century [40]. A combinatorial foundation for

urn models in general and balls-into-bins games in particular was provided by Whitworth and

MacMahon [93, 56]. In computer science balls-into-bins games were found to be a powerful

model to analyse hashing and load balancing strategies. In this context the aim is to find strategies

that balance the balls evenly over the bins and produce small maximum loads. Karp et al. [45]

and Azar et al. [3] sparked new interest when they showed a considerable improvement in the

maximum load that is achieved by letting each ball choose two random bins instead of one and

allocate itself to the lesser loaded.

We will briefly describe urn problems, before we solely concentrate on balls-into-bins games.

Due to the results in the subsequent chapters the focus lies on the maximum load in multiple-

choice games. Most of all we are interested in weighted bins (Chapter 3), non-uniform probabil-

ities (Chapter 3 and 4) and parallel settings (Chapter 5).

2.1 Urn Problems

Urn models offer a natural and easy way of describing a great variety of random experiments

and processes. They are used in combinatorics and provide an instrument to develop probability

25



www.manaraa.com

2 Related Work

theory, more flexible than dice, cards or coins [33]. We distinguish between urn problems and

occupancy models (or balls-into-bins games). The former cover all games in which (possibly

coloured) balls are drawn from urns, the latter all games in which balls are randomly allocated to

urns (or bins).

According to Heubeck [37] and Johnson and Kotz [40], Huygens analysed urn problems as

early as 1665 [38]. Occupancy problems were mentioned by de Moivre in 1718 [24, 40].

Urn problems are described by a set of coloured urns, each containing a set of coloured balls,

and a protocol that defines how balls are drawn from and placed into the urns. Balls (urns) of the

same colour are not distinguishable. Generally, when a ball is drawn from an urn that contains s

balls, each ball in this urn has the same probability 1
s to be selected. Dependent on the model

balls are drawn from one or several urns, with or without replacement, dependent or independent

of previous balls. The colour of the current ball can, for instance, determine the next urn(s) from

which balls are drawn and the colour and number of balls that are (re)placed into the urn.

Johnson and Kotz [40] show how basic ideas of probability theory can be derived from urn

models and develop a distribution theory based on them. They also list applications in other

sciences like physics, chemistry and biology and describe in detail how the spread of contagious

diseases can be modelled by Pólya-Eggenberger distributions.

A well-known problem that can be expressed as a relatively simple urn problem is the birthday

paradox [91] that is described in the following example.

Example 2.1.1. Suppose a year has exactly n = 365 days, and every day has the same probabil-

ity 1
365 to be the birthday of a randomly selected person. How many people need to be gathered

in one room so that there is a 50% probability that at least two of them share the same birthday?

A similar question is: What is the expected number of people needed so that at least two of them

share the same birthday.

Rewritten as an urn problem this problem reads: Suppose we have a single urn with n = 365

coloured balls which are pairwise distinct. Balls are drawn from the urn with replacement, that

is, the selected ball is immediately put back into the urn. How many balls need to be drawn so

that there is a 50% probability for at least one ball being chosen twice? What is the expected

number of samples until a ball is drawn that has been chosen before?
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2.2 Single-choice Balls-into-bins Games

The urn models we are actually interested in are the occupancy models or balls-into-bins games.

A balls-into-bins game is defined by a set of m balls, a set of n bins (or urns) and a protocol that

specifies how the balls are (randomly) allocated to the bins.

We classify the games by the number of choices per ball which we denote by d. In single-

choice games each ball chooses d = 1 bin i.u.r. and allocates itself to it. If d ≥ 2, we speak

of multiple-choice games. Each ball looks at d randomly chosen bins, selects one of them and

allocates itself to it. Generally, for any d ∈ N, we will also use the term d-choice game.

The birthday paradox [91] that we expressed as a classical urn model in Example 2.1.1 can

also be written as a single-choice balls-into-bins game. We identify the days with bins and the

persons with balls that are randomly allocated to the bins. If n = 365 is the number of bins, the

question is: What is the expected number of balls that need to be thrown, until one bin contains

two balls? We answer this question in the following lemma:

Lemma 2.2.1 (e.g. [32, 48]). Let n ∈ N be the number of bins and let X count the allocated

balls until one bin contains two balls. Then the expected value is

E[X] = 1 +Q(n) = O(
√
n)

where

Q(n) ∼
√
π · n

2
− 1

3
+

√
π

288 · n
− ... = O(

√
n)

is derived from Ramanujan’s Θ-function [75, 76, 32]. For n = 365 in particular,

E[X] = 1 +Q(365) ≈ 24.62.

All new results in this thesis that are related to balls-into-bins games target the load distri-

bution: Placing m balls into n bins according to a given protocol, how evenly will the balls be

distributed over the bins? What is the maximum load? Therefore, we will concentrate on these

questions in the remainder of this chapter.

In [35] Gonnet shows for the single-choice balls-into-bins game and m = n that, w.h.p.,

the fullest bin contains Γ−1(n) ·
(

1 +O
(

1
ln(Γ−1(n))

))
balls1 which implies a maximum load

of ln(n)
ln ln(n) · (1 + o(1)) [74]. Mitzenmacher provides an easier proof for the less precise state-

1Γ(n) is the gamma function which extends the factorial to non-integer arguments. For n ∈ N it is defined as Γ(n) =
(n− 1)!, for x ∈ R+ as Γ(x) =

∫∞
0 tx−1 · e−tdt (see e.g. [50], pp. 342-348).
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ment Θ
(

ln(n)
ln ln(n)

)
and also shows that, in case m < n

ln(n) , the maximum load is Θ
(

ln(n)
ln(n/m)

)
w.h.p. [62].

Raab and Steger give a more elementary proof of Gonnet’s result in [74] and extend it to

all m ≥ n
polylog(n) . They achieve very tight bounds by applying the first and second moment

method2:

Theorem 2.2.2 (by Raab et al., Theorem 1 in [74]). Let M be the random variable that counts

the maximum number of balls in any bin, if we throw m balls independently and uniformly at

random into n bins. Then Pr [M > kα ] = o(1) if α > 1 and Pr [M > kα ] = 1 − o(1) if

0 < α < 1, where

kα =



ln(n)

ln(
n·ln(n)
m )

·
(

1 + α · ln ln(
n·ln(n)
m )

ln(
n·ln(n)
m )

)
if n
polylog(n) ≤ m� n · ln(n)

(dc − 1 + α) · ln(n) if m = c · n · ln(n)

m
n + α ·

√
2 · mn · ln(n) if n · ln(n)� m ≤ n · polylog(n)

m
n +

√
2 · mn · ln(n) ·

(
1− 1

α ·
ln ln(n)
2·ln(n)

)
if m� n · ln3(n)

Here, c is a constant and dc is the unique solution of

fc(x) := 1 + x · (ln(c)− ln(x) + 1)− c = 0

for which dc > c.

Single-choice balls-into-bins games with weighted balls are analysed in [79, 51, 10, 11]. As

we will only consider allocation processes with unit-sized balls in the following chapters, we

skip these results and continue with multiple-choice games.

2.3 The Power of Two Choices

Around 1990 researchers started to investigate how an increase in the number of choices d affects

the load distribution in allocation processes. The surprising discovery was that, compared to the

single-choice game, the maximum load in the 2-choice game is exponentially lower in the case

m = n. A further increase of d, however, yields only a constant improvement.

According to [63], this effect was first observed by Eager, Lazowska and Zahorjan in [28].

The first mathematical analysis appeared in [45]. There Karp, Luby and Meyer auf der Heide

investigate how a parallel random access machine (PRAM) with concurrent read / write oper-

2Most of the results were “folklore” though and known for decades; see references in [40, 49, 15].
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ations (CRCW) on shared memory can be simulated by a distributed memory machine (DMM)

where parallel access to the same memory module is not possible. The delay of such a simulation

is measured by the “time needed to simulate a parallel memory access of the PRAM” [45]. The

authors suggest to store data in more than one memory module of the DMM (using several hash

functions) and show that the delay can be reduced from Θ
(

ln(n)
ln ln(n)

)
to O(ln ln(n) · ln∗(n)),

where n is the number of processors and memory modules. (In the context of PRAM simulations

this idea was further discussed in [26, 55, 22, 60].)

Azar, Broder, Karlin and Upfal [3, 4] consider the standard d-choice balls-into-bins game.

They introduce the protocol GREEDY[d] (see Section 1.1.4) and the layered induction technique

to analyse it. For the general case m ≥ n, they prove that the maximum load is (1 + o(1)) ·
ln ln(n)
ln(d) + Θ

(
m
n

)
w.h.p. In particular this implies:

Theorem 2.3.1 (by Azar et al., Theorem 1.1 in [4]). Suppose that n balls are sequentially placed

into n bins. Each ball allocates itself to the least loaded of d ≥ 2 bins that are chosen i.u.r. Then,

w.h.p., the maximum load is

ln ln(n)

ln(d)
+ Θ(1) (2.1)

Berenbrink, Czumaj, Steger and Vöcking [8, 9] improve on the result for m > n and show

that, w.h.p., the expected maximum load above the average m
n is independent of the number

of balls:

Theorem 2.3.2 (by Berenbrink et al., Corollary 1.4 in [9]). Suppose thatm balls are sequentially

placed into n bins. Each ball allocates itself to the least loaded of d ≥ 2 bins that are chosen

i.u.r. Then, w.h.p., the maximum load is

m

n
+

ln ln(n)

ln(d)
+ Θ(1).

In the proof they first show that the result holds for m = poly(n) and then extend it by

applying a Short Memory Lemma. In Chapter 5 we will describe their approach.

In [3] Azar et al. also consider the infinite process assuming that in each step one ball is

allocated with GREEDY[d] and one random ball is removed. They show that, if the game starts

with n balls arbitrarily placed into the bins, the maximum load will be ln ln(n)
ln(d) +O(1) w.h.p. after

a recovery time of c·n2 ·ln ln(n) steps. The work was continued and extended in [23, 21, 20, 19].

The multiple-choice game with weighted balls is addressed in [10, 85, 73].
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2.3.1 Slight Modifications of the Multiple-Choice Game

The power of two choices paradigm was a breakthrough in randomised load balancing, but also

raised the question whether other small changes could possibly lead to better results.

A somewhat surprising improvement was presented in [88] by Vöcking. For his GOLEFT[d]

strategy he assumes that the bins are partitioned into d sets of size n
d . Every ball chooses exactly

one bin from each set i.u.r. and allocates itself to the least loaded. Contrary to GREEDY[d], ties

are not broken arbitrarily, but the ball chooses the leftmost of the least loaded bins.

For m = n, Vöcking shows that, w.v.h.p., the maximum load is

ln ln(n)

d · ln(Φd)
+O(1) (2.2)

where Φd = limk→∞
k
√
Fd(k) < 2 and Fd(k) are the d-ary Fibonacci numbers3 [88]. Similar to

GREEDY[d], this bound also holds for the gap between maximum and average load if m > n [9].

Note that, for all d ≥ 2, (2.2) is strictly better than (2.1). And simulations in [89] suggest that

GOLEFT[d] results in better maximum loads in practice as well – seemingly independent of n.

Kenthapadi and Panigrahy add in [47] that, at least in case m = n, one can save random bits

during the process as they show that “such bounds can be achieved by making only two random

accesses and querying d
2 contiguous bins in each access” [47]. More precisely, the n bins are

divided into 2·n
d clusters of size d

2 . Every ball chooses two clusters and places the ball into the

least loaded bin of the lesser loaded cluster. If the clusters have equal total load, then the tie is

broken to the left.

In [90] Vöcking shows a matching lower bound of

ln ln(n)

d · ln(Φd)
−O(1).

Interestingly this bound is valid for all multiple-choice strategies whose d choices are (possi-

bly) non-uniform and (possibly) dependent. In Section 2.5 and 2.6 we will review more such

processes, yet, processes that do not benefit from non-uniformity.

Mitzenmacher, Prabhakar and Shah consider in [65] a 2-choice model that allows for reusing

one of the previous choices. As usual each ball allocates itself to the lesser loaded of two bins,

but only one of these two bins is newly chosen. The other bin is memorised by the system as the

lesser loaded bin of the previous round after the allocation of the ball.

3Fd(k) = 0 for k ≤ 0, Fd(1) = 1 and Fd(k) =
∑d

i=1 Fd(k − i) for k ≥ 2.
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For the maximum load the authors show the same upper bound as in Vöcking’s approach, i.e.

(2.2) for d = 2.

2.4 Parallelisation

The disadvantage of GREEDY[d] is that it is a sequential algorithm – in which one ball is allocated

after the other – and that it loses its powers in a parallel setting. The single-choice protocol can be

run in parallel because the allocation of a ball does not depend on the positions of the other balls.

In the multiple-choice game, however, this is not the case as it is essential for the performance

that the loads are updated before the next ball is allocated. Since many applications like load

balancing and hashing assume a parallel environment, it is desirable to adapt GREEDY[d] to

these settings.

Not long after the publication of GREEDY[d] and its analysis, different attempts were made to

parallelise it [2, 61, 62, 82, 12, 1, 13]. Most strategies involve additional rounds of communica-

tion, some are also adaptive and allow for rechoosing bins. Recently Even and Medina reviewed

these models and suggested corrections in [29, 30]. In order to describe the models and results

we will use the vocabulary defined in Section 1.1.4 which is adopted from [2, 82, 1, 30]. In what

follows, r denotes the (maximum) number of communication rounds.

The first parallel multiple-choice protocols were introduced by Adler, Chakrabarti, Mitzen-

macher and Rasmussen in [2]. Their algorithms PGREEDY, MPGREEDY and THRESHOLD

address the static model with m = n and allow parallel message exchange based on the commu-

nication graph. Stemann and Even et al. consider the same model and add the k-COLLISION and

the RETRY protocol, respectively [82, 29]. Most of these protocols achieve a maximum load of

O

(
r

√
ln(n)

ln ln(n)

)
. (2.3)

The algorithm PGREEDY[d] is based on GREEDY[d] and adds only one round of communica-

tion. After each ball has chosen and informed its d random bins, the bins send their current height

back, that is, the number of answered requests. Messages arriving simultaneously at the same

bin are processed one by one (in arbitrary order) so that each reply contains a different height. As

soon as a ball has received all d answers, it will commit to the bin of lowest height. PGREEDY[d]

is symmetric, non-adaptive and asynchronous. The maximum load achieved equals (2.3) for

r = 2 w.h.p. [2].

The protocol MPGREEDY[d] works similar, but adds a number of communication rounds that
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is not fixed beforehand. When a ball informs the d chosen bins, it attaches its identification

number (ID), randomly chosen from a large enough set. These IDs are then used by the bins to

sort the list of requests. In every (synchronous) communication round each bin sends its current

load to the ball whose ID comes next in the list. If a ball receives at least one message, it will

allocate itself to a bin of lowest load and cancel all its remaining requests. MPGREEDY[d] is also

symmetric and non-adaptive, but it is not asynchronous because, contrary to PGREEDY[d], a ball

cannot deduce on its own from the (number of) returned messages whether a round is complete.

According to [2], the expected maximum load as well as the number of communication rounds is

ln ln(n)

ln(d)
+ 2 · d+O(1).

The synchronous protocol THRESHOLD[T ] diverges from GREEDY[d] more considerably as

it allows for rechoosing bins. In each round every ball not yet allocated chooses a random bin.

Each bin accepts up to T balls and rejects all balls above this threshold. If the balls include

their round numbers in their messages, this protocol works completely asynchronously. A bin

must only memorise how many balls it has already accepted from each round. Adler et al.

prove that, w.h.p., THRESHOLD[1] terminates after at most ln ln(n) +O(1) steps which implies

that the maximum load is also at most ln ln(n) +O(1). It approximately matches the maximum

load of GREEDY[d] and is achieved inO(Ω(ln ln(n))) asynchronous rounds whereas GREEDY[d]

requires n synchronous rounds. The authors show that THRESHOLD[T ] terminates after r rounds

w.h.p. if the threshold T equals (2.3). This implies a maximum load of r · T which is again (2.3)

if r is constant.

The k-COLLISION protocol (by Stemann [82], based on [26]) has the same upper bounds as

THRESHOLD[T ], with the difference that they hold for all r ∈ O(ln ln(n)). The protocol starts

with each ball choosing two bins. After all bins have received the requests (synchronisation

point), each bin checks if it has got at most k requests (where k equals (2.3)). If this is the case,

it sends acknowledgments back to the balls. Otherwise it waits until the number of requests drop

to k. When a ball receives at least one acknowledgment, it allocates itself to one of the according

bins and cancels all other requests. The k-COLLISION protocol is symmetric, non-adaptive and

almost asynchronous as it has only one synchronisation point. The loops can run asynchronously.

Adler et al. also provide a matching lower bound of

Ω

(
r

√
ln(n)

ln ln(n)

)
(2.4)
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for non-adaptive, symmetric protocols given that d and r are constant and that all decisions

are based on the unlabelled access graph [2]. Berenbrink, Meyer auf der Heide and Schröder

generalise this lower bound to r ≤ ln ln(n) in [12] matching Stemann’s k-COLLISION protocol.

However, in [29] Even et al. point out that the lower bound does not hold for PGREEDY[d]

and THRESHOLD[T ] as they base their decisions on loads or round numbers, respectively. The

access graph cannot be regarded as unlabelled because vertices (i.e. bins) with lower loads or

round numbers are preferred. In [29] they show explicit lower bounds for both algorithms, and

in [30] they generalise the lower bound of (2.4) to all aforementioned algorithms by rendering

the symmetry assumption and some restrictions on the access graph unnecessary.

The first results for m > n appeared in [82]. Allowing Ω
(

ln ln(n)
ln(m/n)

)
rounds of communi-

cation, the k-COLLISION protocol achieves a maximum load of O(mn ). Berenbrink et al. [12]

adapt the k-COLLISION protocols to weighted balls. The only change is that balls attach their

weights to their requests and that the threshold k is now compared to the sum of weights (instead

of the number of balls). If WA and WM are the average and maximum weight, respectively,

then the maximum load is shown to be

γ ·
(m
n
·WA +WM

)
for

ln ln(n)

ln
(
γ
4 ·
(
m·WA

n·WM + 1
)) + 1

rounds of communication. In case of uniform weights this result conforms to the bound in [82].

Besides the static model, Stemann [82] also investigates a finite dynamic model in which n

players have τ = m
n balls each and allocate them to n bins – one after the other, but without

waiting for other players. Message exchange is restricted to the communication graph and to

copies of the same ball. This so-called τ -ALLOCATION strategy lets a ball choose two bins and

send a copy of itself to each of them. Every bin has two queues, one for first copies, one for

second copies, and processes one ball from every queue per time step (provided that they are not

empty). When a ball is processed, its copy is removed from the system as well. The according

player is informed whereupon it initiates the allocation of the next ball.

The τ -ALLOCATION protocol is non-adaptive, symmetric and asynchronous. If τ = ln(n),

then, w.h.p., all balls will be allocated in time O(ln(n)). The maximum waiting time is bounded

by O(ln ln(n)).

Another finite dynamic model is the supermarket model that was introduced by Mitzenmacher

in [61]. Even though the allocation of the balls follows GREEDY[d] (or THRESHOLD[T ]), the

model differs significantly from the standard process as the service times of the bins and the

arrival rate of the balls are not regular. The service times are exponentially distributed with

33



www.manaraa.com

2 Related Work

mean 1, and the balls arrive in a Poisson stream with average arrival rate λ < 1 which implies

that the intervals between the arrivals are also exponentially distributed. Assuming that all

balls base their decision solely on the bin loads (but not on the service times), Mitzenmacher

shows that the expected waiting time is constant for n → ∞. The maximum waiting time

is O(ln ln(n)).

The supermarket model is further analysed in [62, 92, 64].

Adler, Berenbrink and Schröder [1] investigate the INFINITE ALLOCATION process in the

dynamic model. It is inspired by the infinite, sequential d-choice process [4, 23] as well as

Stemann’s τ -ALLOCATION protocol [82]. The authors assume that the balls arrive in batches of

size s and that each ball sends a copy of itself to d ≥ 2 randomly chosen bins. The balls are

stored in FIFO queues and, thus, processed in the order of arrival, one ball per bin in every round

(unless the queue is empty). When a ball is processed, all its copies are informed and removed

from the queues.

The INFINITE ALLOCATION protocol is non-adaptive, symmetric and asynchronous. If s ≤
n
9 , then the expected waiting time is constant and, thus, most of the balls are processed very

quickly. However, the maximum waiting time is ln ln(n)
ln(d) +O(1) w.v.h.p.

In Chapter 5 we will analyse the bare GREEDY[d] protocol in a dynamic model. The balls

arrive in batches of size n and each batch is allocated in parallel. This is modelled by updating

the bin loads only between the batches. We will show that, if m ≤ poly(n), the gap between

average and maximum load is O(ln(n)) and, thus, independent of the number of balls.

2.5 Non-uniform Probabilities

All load balancing schemes considered so far are based on the assumption that the probabilities

for bins to be probed are uniform; i.e., each bin has the same probability 1
n . In many appli-

cations, however, this cannot generally be assumed. One prominent example is load balancing

in distributed hash tables (see below). Byers, Considine and Mitzenmacher [17, 18] suggest to

apply the multiple-choice paradigm and analyse it for m = n. Wieder [94] generalises their

approach to the heavily-loaded case m � n. In this section we describe their work and finish

with an outlook on Chapter 3.

We consider consistent hashing as it is used in some implementations of distributed hash

tables [43, 84]. The task is to hash keys (items, requests, balls) to a set of peers (nodes,

computers, bins) in such a way that (i) the keys are sufficiently balanced over the peers and that

(ii) changes in the network structure do not overly affect the performance. In a basic approach,
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used in Chord [84], the peers as well as the keys are mapped to points on a one-dimensional ring.

Each peer is assigned all keys that are mapped to the arc bounded by itself and by the next peer

on the ring in clockwise direction. Whenever a peer leaves the network, its arc is simply added

to the arc of the predecessor (on the ring) which receives all the stored items. When a peer joins

the network, it is assigned a new arc and takes over all items from its predecessor that belong to

this arc.

The advantage of this hashing technique is that it behaves well in dynamic environments.

Compared to other strategies, the addition and removal of peers induce only a relatively small

number of relocations. The disadvantage of consistent hashing is the discrepancy in the arc

lengths that leads to a considerable imbalance in the load distribution. Let n denote the number

of peers. It can be shown that the maximum arc length is Θ
(

ln(n)
n

)
w.h.p. and, thus, about ln(n)

times greater than the average arc length 1
n [17].

To solve this problem different solutions were developed (e.g. [83, 57, 14, 69]). Stoica et

al. suggest to map every peer to r points on the ring instead of only one so that it receives all

keys mapped to the according r arcs [83, 46]. They call the additional points virtual peers and

recommend r = Θ(ln(n)). Even though this does reduce the deviation of the arc lengths, the

overhead due to the additional edges in the overlay graph4 and messaging costs is considerable

[83, 17].

In [14] Bienkowski et al. introduce a protocol that achieves a constant deviation in the arc

lengths by allowing some redistribution of the intervals. Triggered by join and leave operations

a constant number of peers can migrate to other points on the ring. The obvious disadvantages

are the additional communication and the increased number of items to relocate.

Byers et al. point out in [17] that the load would still be unbalanced even if all intervals had the

same length because this case would conform to the standard single-choice balls-into-bins game

and result in a maximum load of mn +O
(√

m·ln(n)
n

)
for m items and n peers (Theorem 2.2.2).

Hence, the authors suggest to apply the multiple-choice paradigm and to run GREEDY[d] on the

network: For each item that is to be allocated, d ≥ 2 hash functions are used to choose d points

on the ring. The according peers send their current loads back and the item commits itself to the

peer of lowest load; ties are broken arbitrarily.

Surprisingly, for m = n the maximum load is shown to be at most ln ln(n)
ln(d) + O(1) w.h.p. –

which is optimal because it matches the lower bound of the standard game (Theorem 2.3.1).

In addition, simulations suggest that this strategy is superior to the virtual peers approach for

4The overlay graph describes how the peers are interconnected. The design of the overlay graph governs the search
time for items in the network. For details see [84].
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arbitrary m [17]. It is also remarkable that the running time for search operations does not

significantly increase with the number of hash functions. When an item is allocated, the other

d − 1 peers are provided with redirection pointers pointing to the peer that got the item. Thus,

when an item is requested, it suffices to call only one hash function and to follow the redirection

pointer.

In [18] the same authors extend the analysis to the case m > n. Based on [4], they show a

maximum load of O
(
m
n

)
+O

(
ln ln(n)
ln(d)

)
. Furthermore, they prove that their results hold even if

the one-dimensional ring is replaced by a two-dimensional torus. Here, the peers and items are

mapped to points in the torus, and the nearest peer is determined by the Euclidean distance.

The question – raised in [18] – whether there exists a (significantly) stronger bound on the

maximum load form > n and (fixed) d ≥ 2 is negated by Wieder in [94]. For the d-choice game

with uniform probabilities Berenbrink et al. [8] proved that the gap between maximum and

average load does not change with the number of balls m. But, as Wieder shows by example,

this result is not transferable to the consistent hashing scenario of [17, 18].

However, if d is allowed to slowly grow with the deviation in the probability distribution, then

it is possible to show such a result [94]. Let a distribution be (α, β)-biased if for all probabilities

pi, i ∈ [n], it holds that 1
α·n ≤ pi ≤ β

n . If the probability distribution over the bins is (α, β)-

biased and if

d ≥ (1 + ε) ·
ln
(
α·β−1
α−1

)
ln
(
α·β−1
α·β−β

) ,
for ε > 0, then, w.h.p., the maximum load is at most

m

n
+

ln ln(n)

ln(1 + ε)
.

The presented bounds are tight in such a way that, for any ε < 0, there exists a (α, β)-biased

distribution that leads to a deviation of the load linear in m.

As a motivation for his paper [94], Wieder considers balls-into-bins games in which the bins

have heterogeneous capacities. A bin with storage capacity (or speed) 3, for example, can store

(process) three times as many balls as a bin with capacity 1. Wieder assumes that such a game

can be reduced to a game with heterogeneous probabilities. In order to compensate for the

different abilities of the bins, he suggests to set the probabilities proportional to their capacities.

In Chapter 3 we will analyse this problem in detail and prove bounds on the maximum load.
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2.6 Graph-based Models

Further examples for balls-into-bins games with non-uniform choices are the (hyper)graph-based

models by Kenthapadi et al. and Godfrey [47, 34]. They provide the basis for Chapter 4.

In [47] Kenthapadi and Panigrahy study the standard 2-choice game (of Azar et al. [3]) with

the restriction that only pairs of bins can be chosen that are connected by an edge in an underlying

graph. Each edge in the graph has the same probability to be chosen. Given that the graph is

∆-regular, the authors upper-bound the maximum load by

ln ln(n) +O
(

ln(n)

ln(∆/ ln4(n))

)
+O(1)

w.h.p. and also provide a nearly matching lower bound. In particular, if the graph is nε-regular,

the maximum load is ln ln(n) +O(ε−1) +O(1) and, thus, not worse than in the standard game.

Godfrey [34] extends the model of [47] from graphs to multi-hypergraphs in which each

hyperedge connects d of the n vertices that represent the bins. The hypergraph is allowed to be

different for every ball. In order to allocate itself, each ball first chooses a hyperedge i.u.r. and

then a bin of lowest load within the hyperedge.

Assume d = c · ln(n) for a suitable constant c. For the hypergraph of any ball j, let degj(bi)

denote the degree of vertex (bin) bi and pij :=
degj(bi)

|E|·d the relative frequency of bi. If, for all j,

the pij are (β, β)-biased (or β-balanced as Godfrey terms it), then, after throwing m ≤ n
Θ(β)

balls, the maximum load will be 1 w.h.p.

In Chapter 4 we will discuss Godfrey’s model and results in more detail. There we will im-

prove the bound for m, relax the notion of balancedness and present a simpler proof. Moreover,

we will show matching lower bounds and similar results for an extended model.
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In this chapter we consider a variant of the balls-into-bins game with multiple choices. In our

model the balls have unit size as usual, but the bins have different capacities. We consider

different probability distributions over the bins and analyse the load distribution.

Preliminary versions of some results presented in this chapter were published in:

[7] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into non-

uniform bins. In Proceedings of the 24th IEEE International Parallel and Distributed

Processing Symposium, IPDPS ’10, pages 1–10. IEEE, 2010

The results are improved and new findings have been added.

3.1 Introduction

In the standard balls-into-bins game m unit-sized balls are allocated to n unit-sized bins. It

is assumed that every ball independently, uniformly and randomly chooses d bins and that it

commits itself to the least loaded bin. The goal of this strategy is to balance the load over the

bins and to minimise the maximum number of balls allocated to any bin.

In the variant of the game that we consider here, we assume that the bins are not uniform,

but that they come with an integer capacity ci. The load `i = mi
ci

is defined as the ratio of the

number of balls mi assigned to it and the capacity ci. Again, every ball has d random choices,

and the goal is to minimise the maximum load.

Let C =
∑n
i=1 ci be the sum of the capacities of all bins. The natural probability for a

bin to be chosen would be either 1
n , that is uniform, or ci

C , proportional to the bin’s capacity.

Analysing the latter case, we prove, for m = C and d = 2, that the maximum load is at most

ln ln(n)
ln(2) +O(1) w.h.p. (Theorem 3.3.5) and under certain conditions even constant (Theorem 3.3.5

and 3.3.6). Additionaly we investigate games with differing probability distributions and show

that significantly better results can be achieved in some cases (Theorem 3.3.9).

This generalisation of the standard d-choice game is especially valuable for load balancing

in heterogeneous networks because it allows for modelling computers with different speeds or
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storage capacities. In such scenarios it is desirable to assign more requests (balls) to the better

computers (bins with higher capacities). Our approach demonstrates how this can be realised by

adapting the probabilities – in theory and in practice as simulations suggest well-balanced load

distributions even for small n and large m (Section 3.4).

3.1.1 Related Work

Heterogeneous bin sizes have been considered in the related field of selfish load balancing [31],

but to our knowledge nobody has analysed it for balls-into-bins games. Such processes are only

mentioned by Wieder in [94] to motivate his work about multiple-choice games with heteroge-

neous probabilities. He suggests to choose the bins’ probabilities proportional to their capacities.

In this chapter we will analyse this particular case and variations of it.

For a broader view of the related work see Chapter 2. Especially relevant for this chapter are

the Sections 2.3, 2.4 and 2.5.

3.1.2 Contributions

All previous results assume that each bin has capacity 1 and that the balls should be distributed

as evenly as possible. In contrast, we assume that the system consists of heterogeneous bins

where each bin bi can have an arbitrary integral capacity ci and where its load is defined as the

number of balls divided by ci. The objective is to balance the load over the bins according to

their abilities. If not stated otherwise, we assume that a bin’s probability to be chosen is ci
C where

C =
∑n
i=1 ci.

In the analytical part of this chapter, we show that under these circumstances the maximum

load is at most ln ln(n)
ln(2) + O(1) w.h.p. if d = 2 and m = C (Theorem 3.3.5). The maximum

load stays constant if C ≥ n2 or if almost all bins have capacity Ω(ln(n)) (Theorem 3.3.5

and 3.3.6). Provided that we can choose a different probability distribution over the bins, a

constant maximum load can be achieved even if there is only a constant fraction of Θ(ln ln(n))-

sized bins (Theorem 3.3.9). The proof of this theorem uses Observation 3.3.7 which states that,

if all bins have the same capacity c̄, the maximum load is bounded by 1
c̄ ·
(
m
n +O(ln ln(n))

)
w.v.h.p. This bound is based on [9] and holds even in the heavily loaded case (m� C).

Based on a simulation environment, we arrange and simulate bin arrays with varying param-

eters in Section 3.4 and compare our analytical results with the experiments. In this simulations

section, we also consider settings that we have not analysed, most notably the general heavily
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loaded case and systems with a small number of bins. The outcomes of the latter suggest the

practicability of the analytical results.

3.1.3 Motivation

One can look at the problem in three different ways: (1) The bin sizes and probabilities are fixed.

The task is to analyse the distribution of the balls in general and the maximum load in particular.

(2) The capacities of the bins are given and the aim is to find the probability distribution that

achieves the most balanced system. (3) The probabilities are fixed and the question is how to

alter the capacities in order to balance the load more evenly.

(1) The first approach is the one we mainly focus on, and we usually assume that the proba-

bilities are proportional to the bin sizes. This is a natural assumption: If there were actual bins

covering the floor and a ball was dropped from a random point above them, then this would be

the resulting probability distribution. Even though this approach does not (necessarily) result

in the optimal load distribution, it works fairly well and might, for instance, be the best choice

for a dynamic network that is frequently joined and left by servers (bins) of different speeds

(capacities). This way the revaluation of the probabilities and the alterations to the selection

algorithm could be kept simple.

(2) Computer networks, especially peer-to-peer (P2P) environments, are often heterogeneous

in terms of speed and storage capacity. In such a case it makes sense to prefer computers that

have faster processors or more memory and increase their probability to receive requests. What

is the optimal strategy to balance the load evenly? Special cases of this problem are examined

in Theorem 3.3.9 and in the experiment described in Section 3.4.4, but generally this question

remains open.

(3) The inverse scenario is also imaginable, an environment in which the non-uniform prob-

abilities are given, but not the capacities. P2P environments like Chord or CAN [84, 77] are

examples in which the probabilities can considerably deviate from the average – though in such

dynamic systems the increase of a peer’s processing or storage capacity is not a good option.

A better application would be a static, widely distributed network of servers in which clients

tend to choose servers close-by. E.g., the network could be run by a company that offers music

or software to download. If certain servers were more frequented than others, then the overall

processing time could be balanced by enhancing their computing or storage capacities.
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Algorithm 1 Load Balancing Protocol
1: for all balls do
2: Choose d bins i.u.r.
3: Among the bins of lowest load place the ball in an arbitrary bin
4: end for

We assume bins to be non-uniform. All bins come with positive integer capacities (which

could also reasonably be referred to as speeds or compression factors). Denote the capacities of

the n bins as c1, . . . , cn and the total capacity as C :=
∑n
i=1 ci. If not stated otherwise, then

we consider the process that allocates m = C balls into n bins, each ball having d ≥ 2 random

choices and committing itself to a bin of smallest load among the chosen bins. We say that, if

mi balls are allocated to a bin bi of capacity ci ≥ 1, then this bin’s load is `i = mi
ci

. Usually

we will assume that the probability of bin bi with capacity ci being chosen is ci
C and therefore

proportional to ci. If we use other probability distributions, we will clearly point this out.

To make our proofs more accessible we will occasionally imagine that each bin of capacity c

does actually consist of c many unit-sized slots (the protocol is entirely unaware of this). Hence,

the total number of slots equals the total capacity C of the bins. For a fixed slot i ∈ {1, . . . , C}

let b(i) denote the unique bin to which slot i belongs. The height of a ball is the load of the bin it

is allocated to directly after its allocation. Thus, if a ball falls into a bin of load `i and capacity ci,

then its height will be `i + 1
ci

.

The terms load vector L = (`1, . . . , `n) and normalised load vector L̄ = (¯̀
1, . . . , ¯̀

n) are

used as defined in Section 1.1.4. For (possibly) non-uniform bins with total capacity C we also

define the slot load vector S = (s1,1, . . . , s1,c1 , s2,1, . . . , s2,c2 , . . . , sn,1, . . . , sn,cn) where si,j

is the j-th slot of the i-th bin. The load of a slot is the number of balls it contains. Let b be a

bin of capacity c containing r balls. We assume that slots are filled in a round-robin fashion and

therefore that b’s first (leftmost) r mod c slots contain one ball more than the remaining slots.

The normalised slot load vector is denoted by S̄. For convenience, we specify that, if two slots

contain the same number of balls, then the slot that belongs to the more loaded bin comes first.

(We may drop the two-dimensional indices and instead use 1, . . . , C as any correspondence of

position within S̄.)

If we allocate m balls into n bins, Li (L̄i, Si, S̄i) is defined as the load vector (normalised

load vector, slot load vector, and normalised slot load vector, respectively) after the allocation of

the i-th ball.
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3.3 Analysis

The structure of this section is as follows: The main contribution is Theorem 3.3.5, upper bound-

ing the maximum load of any bin in a system with bins of variable capacities. We start by proving

Observation 3.3.2 that bounds the load of big bins as well as the height of balls that have at least

one big bin among their choices. Lemma 3.3.3 shows that load distributions achieved by systems

with solely unit-sized bins dominate those achieved by systems with heterogeneous bins with

the same total capacity. This lemma will then be used to prove Theorem 3.3.5. Theorem 3.3.6

analyses under which circumstances (that is, number of small bins vs. number of big bins) we

may achieve constant maximum load. Observation 3.3.7 bounds the maximum load for uniform

bin arrays in the heavily loaded case. Finally, Theorem 3.3.9 uses this observation to show

that much better results than Theorem 3.3.6 are possible provided that one can choose the bins’

probabilities oneself.

Definition 3.3.1 (Big bin, Bb, Bs, `(b)max, `(s)max). A bin is called big if its capacity is at least

r · ln(n) (where r ≥ 2 is a constant), otherwise it is small.

With Bb we denote the set of balls that have at least one big bin among their choices and with

Bs the remaining balls that probe only small bins. `(b)max (`(s)max) is the maximum number of balls

from Bb (Bs) in any bin.

First we bound `(b)max:

Observation 3.3.2. Consider the 2-choice game in which m = C =
∑n
i=1 ci balls are thrown

into n bins with total capacity C. Let k be a positive constant. If k ≤ 2
3 · r− 1, the load in every

big bin is at most 4 and `(b)max ≤ 4 with probability at least 1− n−k.

Proof. This is a simple application of Chernoff bounds. The probability that a ball commits to a

big bin bi is at most 2·ci
C = 2·ci

m . The expected number of balls hitting the big bin bi after m balls

is at most 2 · ci. Let mi be the number of balls that have bin bi as one of their random choices.

Then, using Chernoff bounds (Lemma 1.2.1 with ε = 1), we obtain

Pr [mi ≥ 4 · ci ] = Pr [mi ≥ (1 + ε) · 2 · ci ] ≤ e−ε
2·2·ci/3 ≤ e−2·r·ln(n)/3

= n−2·r/3 ≤ n−k−1

Hence, for r chosen suitably, with probability at least 1 − n−k−1 the bin is chosen by at

most 4 · ci many balls, which is certainly an upper bound on the total number of balls in the bin.
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W.h.p. the load is

`i ≤
mi

ci
≤ 4 · ci

ci
= 4.

Since there are at most n big bins, the probability that (at least) one of them exceeds load 4 is

bounded by n · n−k−1 = n−k.

Note that this observation still holds if all balls that choose a big bin are allocated to the big

bin. Since under these circumstances the maximum load of big bins is still w.h.p. at most 4, no

ball of Bb will choose a small bin unless its load is smaller than 4. Hence, no ball of Bb will have

a height of more than 4. This implies `(b)max ≤ 4.

Lemma 3.3.3. Let A be a d-choice process on n non-uniform bins with total capacity C, and

let B be a d-choice process on C unit-sized bins. Then the maximum load in A is stochastically

dominated by the maximum load in B.

Proof. We show this result by coupling. Since the number of bins is different in both processes,

we define the state space as the set of slot load vectors (instead of load vectors). The slot load

vectors in A and B have equal length because the total capacity C is the same in both processes.

We let the balls choose slots rather than bins setting the probability for each slot to 1
C . (Note

that the slot probabilities for a bin with capacity c sum up to c
C .) However, the protocol stays the

same for each ball as we map its slot choices to the according bins and allocate the ball to the

best bin.

As the process starts with empty slot load vectors, SA is majorised by SB in the beginning.

Lemma 1.2.10 states that SA will remain stochastically dominated by SB if an order-preserving

coupling of the two processes exists. This would already imply the statement of the lemma –

that the maximum load ¯̀A
1 in A is dominated by the maximum load ¯̀B

1 in B – because ¯̀A
1 ≤ s̄A1

and ¯̀B
1 = s̄B1 .

Let SAj and SBj denote the slot load vectors after the j-th ball. For the coupling we have to

show that for every ball j there exists a bijection between the random bin choices of A and B

such that SAj � SBj implies SAj+1 � SBj+1. Let b be any bin in process A that has capacity c and

let i1, ..., ic be the slots in S̄Aj that belong to b. Choose the order of the slots so that ic is the slot

that will get the next ball that is allocated to b. (This is possible because ic must be among the

least loaded slots of b.) Then we couple the slots i1, ..., ic in S̄Bj with slot ic in S̄Aj .

Let h1 ≤ h2 ≤ ... ≤ hd be the d random slot choices in B. Each coupled slot in A has either

the same or a higher index. In both systems we choose the rightmost slot (or a slot with the same

properties so that we can swap it with the rightmost slot). Since the index of the rightmost slot

in A is not smaller than the one in B, it follows from Claim 1.2.11 that SAj+1 � SBj+1.
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It remains to prove that we really choose the least loaded bin in system A by allocating the

ball to the rightmost slot: (i) Note that we compare the least loaded slots of the bins at question

and that the slots of a bin are filled in a round-robin fashion. Therefore, if one slot has a strictly

smaller load than another slot, then the same is true for the according bins. (ii) Recall that we

added to the definition of the normalised slot load vector that slots of the same load are ordered

by the loads of the according bins in decreasing order. Hence, even if two slots have the same

load, then the slot with the higher index belongs to the bin of lesser (or equal) load.

Lemma 3.3.4. Consider the d-choice game in which m = C balls are allocated into n bins with

total capacity C. Let c and h be positive constants and ms the total capacity of all small bins.

Then, for any constant κ, `(s)max ∈ O(1) with probability at least 1− n−κ if either

(1) m ≥ n2 or

(2) m ≥ h · n · ln(n) and ms ≤ c · (n · ln(n))2/3.

Proof. We will consider six cases, distinguished by different bounds on ms and m, and prove

for each of them that `(s)max ∈ O(1). The first three cases imply statement (1), the last three cases

statement (2). Since the analysis of each case follows the same method, we outline the two steps

of this method before we insert any values. In two cases, step 1 will already suffice; in all other

cases we will carry out both steps.

Let s be the number of small bins in the system, and recall that Bs denotes the set of balls that

have all d choices among small bins.

Step 1: Bounding Xs := |Bs|. The probability for a ball to be in Bs is

ps =
(ms

m

)d
≤
(ms

m

)2

.

For the number Xs of such balls we obtain therefore

Pr [Xs ≥ k ] = Pr [B(m, ps) ≥ k ]
(L.1.1.2)

≤
(e ·m · ps

k

)k
≤
(
e ·m2

s

k ·m

)k
.

We will choose k so that Pr [Xs ≥ k ] ≤ n−α for any constant α (provided that n is large

enough). In two cases we will be able to choose k as a (small) multiple of α which already

implies a constant maximum load. In the other cases we continue with step 2.

Step 2: Bounding the maximum load. We assume Xs ≤ k (where k is taken over from

step 1). The remaining task is to bound the maximum load of the game in which k balls are
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allocated into s small bins with a total capacity of ms. Lemma 3.3.3 states that the maximum

load of this process is dominated by the maximum load of the process P that allocates k balls

to ms unit-sized bins. Therefore, it is sufficient to show a constant bound for the maximum load

in P .

Let Xc count the number of collisions, that is, the number of times in which a ball falls into a

non-empty bin. For each case, we will show that Xc is constant w.v.h.p. which already implies a

constant maximum load. Let Xc,i, i ∈ [k], denote binary random variables such that Xc,i = 1 if

the i-th ball collides with a previous ball andXc,i = 0 otherwise. Observe thatXc =
∑k
i=1Xc,i.

The collision probability pc := Pr [Xc,i = 1 ] for ball i is upper-bounded by

pc = Pr [Xc,i = 1 ] ≤
(
i− 1

ms

)d
≤
(
i− 1

ms

)2

<

(
k

ms

)2

.

provided that i− 1 ≤ ms.

For the number of collisions Xc we obtain

Pr [Xc ≥ λ ] ≤ Pr [B(k, pc) ≥ λ ]
(L.1.1.2)

≤
(
e · k · pc

λ

)λ
≤
(
e · k3

λ ·m2
s

)λ
.

The six cases. Now we apply the described method to bound `(s)max in six cases that are

specified by different bounds on m and ms. (Note that a small bin has size less than r · ln(n) and

that therefore ms < n · r · ln(n).)

Case: m ≥ n2 and ms ∈ [1, n3/4].

Pr [Xs ≥ k ] ≤
(
e ·m2

s

k ·m

)k
≤
(
e · n3/2

k · n2

)k
=
( e

k · n1/2

)k
From this we can directly derive that `(s)max ≤ Xs ≤ 2 · α = O(1) with probability 1− n−α (for

any constant α ≥ e
2 ).

Case: m ≥ n2 and ms ∈ [n3/4, n].

We choose k = ln(n).

Pr [Xs ≥ ln(n) ] ≤
(

e ·m2
s

ln(n) ·m

)ln(n)

≤
(

e · n2

ln(n) · n2

)ln(n)

= n− ln ln(n)+1

Pr [Xc ≥ λ ] ≤
(
e · k3

λ ·m2
s

)λ
≤
(
e · ln3(n)

λ · n3/2

)λ
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Thus, Xs < ln(n) holds with probability 1− n−α for any given α and Xc < λ with probability

at least 1− n−λ. The maximum load is constant w.v.h.p.

Case: m ≥ n2 and ms ∈ [n, n · r · ln(n)].

We choose k = (r · ln(n))3.

Pr
[
Xs ≥ (r · ln(n))3

]
≤

(
e ·m2

s

(r · ln(n))3 ·m

)(r·ln(n))3

≤
(
e · (n · r · ln(n))2

(r · ln(n))3 · n2

)(r·ln(n))3

=

(
e

r · ln(n)

)(r·ln(n))3

=
( n

rln(n) · nln ln(n)

)r3·ln2(n)

Pr [Xc ≥ λ ] ≤
(
e · k3

λ ·m2
s

)λ
≤
(
e · (r · ln(n))9

λ · n2

)λ

Xs < (r · ln(n))3 holds with probability 1− n−α for any given α and Xc < λ with probability

at least 1− n−λ. Therefore, w.v.h.p., the maximum load is constant.

Case: m ≥ h · n · ln(n) and ms ∈ [1, (n · ln(n))5/12].

Pr [Xs ≥ k ] ≤
(
e ·m2

s

k ·m

)k
≤
(
e · (n · ln(n))5/6

k · h · n · ln(n)

)k
=

(
e

k · h · (n · ln(n))1/6

)k

This immediately yields `(s)max ≤ Xs ≤ 6 · α = O(1) with probability 1 − n−α (for any

constant α).

Case: m ≥ h · n · ln(n) and ms ∈ [(n · ln(n))5/12, (n · ln(n))7/12].

We choose k = (n · ln2(n))1/6.

Pr
[
Xs ≥ (n · ln2(n))1/6

]
≤
(

e ·m2
s

(n · ln2(n))1/6 ·m

)(n·ln2(n))1/6

≤
(

e · (n · ln(n))7/6

(n · ln2(n))1/6 · h · n · ln(n)

)(n·ln2(n))1/6

=

(
e

(ln(n))1/6 · h

)(n·ln2(n))1/6

Pr [Xc ≥ λ ] ≤
(
e · k3

λ ·m2
s

)λ
≤
(
e · (n · ln2(n))1/2

λ · (n · ln(n))5/6

)λ
=

(
e · ln1/6(n)

λ · n1/3

)λ

So,Xs < (n·ln2(n))1/6 with probability 1−n−α for any given α andXc < 4·λwith probability

1− n−λ. Hence, the maximum load is constant w.v.h.p.

Case: m ≥ h · n · ln(n) and ms ∈ [(n · ln(n))7/12, c · (n · ln(n))2/3].
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We choose k = (n · ln2(n))1/3.

Pr
[
Xs ≥ (n · ln2(n))1/3

]
≤
(

e ·m2
s

(n · ln2(n))1/3 ·m

)(n·ln2(n))1/3

≤
(

e · c2 · (n · ln(n))4/3

(n · ln2(n))1/3 · h · n · ln(n)

)(n·ln2(n))1/3

=

(
e · c2

ln1/3(n) · h

)(n·ln2(n))1/3

Pr [Xc ≥ λ ] ≤
(
e · k3

λ ·m2
s

)λ
≤
(

e · n · ln2(n)

λ · (n · ln(n))7/6

)λ
=

(
e · ln5/6(n)

λ · n1/6

)λ

Xs < (n · ln2(n))1/3 holds with probability 1 − n−α for any given α and Xc < 7 · λ with

probability 1− n−λ. This implies that, w.v.h.p., the maximum load is constant.

Theorem 3.3.5. Consider the 2-choice game in which m = C balls are allocated into n bins

with total capacity C. Then, w.h.p., the maximum load is bounded by

ln ln(n)

ln(2)
+O(1).

In case m ≥ n2, the maximum load is constant w.h.p.

Proof. Here we consider two cases for different values of m and n.

m ≥ n2. Observation 3.3.2 states that the maximum load in big bins is constant w.h.p., and

from Observation 3.3.2 and Lemma 3.3.4 it follows that the same holds for the small bins since

`max ≤ `(s)max + `(b)max = O(1).

m < n2. Lemma 3.3.3 compares the process in which m balls are allocated into n bins of

total capacity C with the process that throws m balls into C unit-sized bins and states that the

maximum load of the former is stochastically dominated by the maximum load of the latter. By

applying Theorem 2.3.1 on the standard game with m balls and m = C bins, we obtain a bound

on the maximum load that is also valid for the first process. W.h.p., the maximum load is

`max ≤
ln ln(m)

ln(2)
+O(1) ≤ ln ln(n2)

ln(2)
+O(1) =

ln ln(n)

ln(2)
+O(1).

The upper bound of ln ln(n)
ln(2) +O(1) coincides with the upper bound for the standard multiple-

choice game (Theorem 2.3.1) which is a special case of our problem. So, the matching lower

bound of ln ln(n)
ln(2) −O(1) (Theorem 2.3.1) is also valid for our problem.
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The last theorem also shows that under certain conditions better bounds on the maximum load

are possible. In the following we will consider more such cases. The next theorem observes that

a constant maximum load is achieved if almost all bins are big.

Theorem 3.3.6. Consider the 2-choice game in which m = C balls are allocated into n bins

with total capacity C. Assume that there are s small bins with total capacity ms and n − s

big bins with total capacity m − ms. If ms ≤ c · (n · ln(n))2/3, then the maximum load is

constant w.h.p.

Proof. Again, we apply Observation 3.3.2 which states that, w.h.p., the height of all balls in Bb

is at most 4 so that the load of the big bins is constant. The small bins additionally receive balls

from Bs. We will use Lemma 3.3.4 to estimate the extra load, but in order to apply it, we first

have to bound the total capacity m. Note that s ≤ ms ≤ c · (n · ln(n))2/3 = o(n) so that, for

any constant h < r,

h < r · n− s
n

= r · n− o(n)

n
.

As there are at least n− s big bins, we obtain

m ≥ (n− s) · r · ln(n) > h · n · ln(n).

The bounds on m and ms allow us to apply Lemma 3.3.4 which states that, w.v.h.p., the

maximum load due to balls from Bs is also bounded by a constant.

The next observation bounds the maximum load for arbitrarym and n, but it is only applicable

if all bins have the same capacity. The result is derived from [9].

Observation 3.3.7. Consider the game in which all bins have the same capacity c̄, m balls are

thrown into n bins and each ball comes with d choices. Then the maximum load equals the

maximum load of the standard game (in which all bins have capacity 1) divided by c̄.

In case d = 1 we can apply Theorem 2.2.2 that provides different bounds for different values

of m. If d ≥ 2, we can apply Theorem 2.3.2 so that, w.v.h.p., the maximum load is

`max =
1

c̄
·
(m
n

+O(ln ln(n))
)
.

For m = C = n · c̄ in particular we obtain

`max =
1

c̄
·
(n · c̄
n

+O(ln ln(n))
)

= 1 +
O(ln ln(n))

c̄
.
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Proof. Since all capacities are the same, the loads are computed in the same way for all bins and

every ball adds the same load to the total load regardless of where it is allocated. Therefore the

allocation process equals that of the standard game in which all bins have capacity 1. For the

number of balls in the fullest bin the bounds given in [74, 9] can be applied. Finally, we get the

load by dividing by the bin’s capacity c̄.

Corollary 3.3.8. If c̄ ∈ Ω(ln ln(n)) and if m = k ·n · c̄ for some arbitrary k, the maximum load

is k +O(1), w.v.h.p.

Theorem 3.3.9. Let k and α (0 < α ≤ 1) be constants. Consider the game in which α · n

bins have capacity q(n) and all other bins have capacity smaller q(n). If q(n) ∈ Ω(ln ln(n)),

then there is a probability distribution over the bins such that the maximum load will be constant

w.v.h.p. after the allocation of m = k · C balls.

Proof. Assign probability 1
α·n to all bins with capacity q(n) and probability 0 to all others.

Ignoring the bins with probability 0, we may consider this a game of m = k · C ≤ k · n · q(n)

balls and α · n bins. Applying Observation 3.3.7 we obtain

`max ≤ 1

q(n)
·
( m

α · n
+O(ln ln(α · n))

)
≤ 1

q(n)
·
(
k · n · q(n)

α · n
+O(ln ln(n))

)
≤ k

α
+
O(ln ln(n))

q(n)
≤ k

α
+O(1) = O(1).

The last result implies that in some cases much better results for the maximum load are

possible if one can choose the probabilities oneself.

3.4 Simulations

The purpose of the simulations in this section is two-fold. On the one hand we consider the

games analysed in the previous section and demonstrate that the asymptotic bounds behave well

in practice. On the other hand we look at special settings not covered previously in this chapter

and evaluate the performance of our approach.

Whereas the main focus is on the maximum load in the analytical section, we often consider

complete distributions here. In order to obtain more precise results and smoother curves, the

experiments are usually repeated 10, 000 times and the values plotted the average values. If

not stated otherwise, the probabilities are proportional to the capacities and the number of balls
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equals the total capacity. Each ball has two choices and allocates itself to the lesser loaded bin;

ties are broken arbitrarily.
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Figure 3.1: Uniform bins.

Among others we will present experiments indicating that our results also hold for a very

small number of bins, which is, of course, a setting important for many practical applications.

3.4.1 Uniform Bins

In the first experiment we consider the completely uniform case, that is, all bins have the same

capacity. We have n = 10, 000 bins, and the capacities range around ln ln(n) ≈ 2.22. In

Figure 3.1 we plot the normalised load distribution of the entire bin vector for five different

capacities, c = 1, 2, 3, 4, 8. (In the figure, “x-bins” refers to bins of capacity x.)

According to Observation 3.3.7 the maximum load is 1 + O(ln ln(n))
c for d ≥ 2 and m =

C = c · n. And in fact in our simulations the maximum load is very close to 1 + ln ln(n)
c for

c = 2, 3, 4, 8 and close to ln ln(n)
ln(2) for c = 1 (see Theorem 2.3.1 or Theorem 3.3.5).

In Figure 3.2 on page 51 we consider uniform bins and observe how an increase of the number

of balls m affects the load distribution for different capacities, c = 1, 2, 3, 4. The four plots in

Figure 3.2 show, left to right, top to bottom, the load distributions over the entire array of n = 32

bins, for m = C, 10 · C, 100 · C, 1, 000 · C respectively.

Notice how the deviation from the average load m
n remains constant. In fact the curves for

m = 10 ·C, 100 ·C, 1, 000 ·C look identical and suggest that the deviation is independent of the

number of balls.
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Figure 3.2: Uniform bins, heavily loaded case, varying number of balls.

3.4.2 Distribution in Mixed Arrays

In this section we look at heterogeneous bin arrays. As before we assume that the number of balls

m equals the total capacity C and that the bins’ probabilities are proportional to the capacities.

Under these circumstances it seems plausible that an increase of the total capacity leads to a

decrease in the maximum load because the bigger bins draw balls and a ball in a big bin adds little

to the total load. We will present a few simulations that substantiate this assumption. Moreover,

we will analyse which type of bins are likely to hold the biggest load.
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Figure 3.3: Maximum load as a function of the total capacity.
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Figure 3.4: Maximum load as a function of the total capacity.

Figures 3.3 and 3.4 show how the maximum load changes when the total capacity is increased.

In the first experiment (Figure 3.3) we mix small bins of capacity 1 with large bins of capacity

10. We maintain a fixed number of n = 1, 000 bins and vary the fraction of large bins on the

x-axis from 0% to 100%. We can see clearly that, as expected, the maximum load decreases as

the proportion of large bins increases.

In the second experiment (Figure 3.4) we consider the maximum load as a function of the total

capacity, but the latter is not obtained by gradually increasing the fraction of large fixed-size bins.

Instead, we determine each bin’s capacity using a random process in which, for a desired total

capacityC = c·n (with c between 1 and 8) the size of each bin is determined by 1+X whereX is

a binomially distributed random variable withX ∼ B(7, c−1
7 ). Notice that the total capacity will

in general not be precisely equal to c · n, but it can be shown, theoretically and experimentally,

that it will be very close to it with large probability. The result is very similar to the previous

experiment. While increasing the total capacity, the maximum load rapidly decreases.

Note that the slow decrease between 10% and 30% results from a typical effect happening in

standard balls-into-bins games (uniform balls and uniform bins) with multiple choices. In these

games the number of bins with maximum load of, say `, increases for a long time when the

number of allocated balls is increased. The maximum load increases by one only if a sufficient

number of bins with load ` exist. At first glance it does not seem to be right because the number

of balls grows with the number of large bins. But the maximum load is in the small bins (in the

settings between 0% and, say, 40%), and from the viewpoint of the small bins the number of

balls decrease due to the pull of the large bins.

The plots of Figure 3.5 and 3.6 on page 53 show load distributions for different ratios of small

bins and large bins. We consider two cases: In Figure 3.5 we have only 32 bins, and the bin sizes
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Figure 3.5: Load distributions, two distinct capacities.
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Figure 3.6: Load distributions, two distinct capacities.

are 1 and 2. In Figure 3.6 there are 10, 000 bins, and the bin sizes are 1 and 8. We observe in

both plots: The more large bins we have, the more even the load distribution becomes.

The experiment charted in Figure 3.7 and 3.8 on page 54 equals the one in Figure 3.6 as we

consider the same ratios of small and large bins; size 1 and 8 respectively. Yet, now we show

the results in two separate plots that complement each other. The left part shows only the bins

of size 8, the right part only the bins of size 1. (Notice that the curves do not generally span the

entire width of the figures as there are simply not in general n = 10, 000 bins of a given size

available.)

Observation 3.3.2 and Theorem 3.3.5 predict a constant load in the large bins and higher

loads in some small bins. We can observe that the asymptotical bounds behave very well in our

experiment.

Naturally it is almost impossible to draw any valuable conclusions from the (averaged) load
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Figure 3.7: Two distinct capacities 8 and 1, but only the bins of size 8 are plotted.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Lo
ad

Bin

0x 8-bins, 10000x 1-bins
2500x 8-bins, 7500x 1-bins
5000x 8-bins, 5000x 1-bins
7500x 8-bins, 2500x 1-bins

Figure 3.8: Two distinct capacities 8 and 1, but only the bins of size 1 are plotted.

distribution in the experiment concerning the correctness of our theoretical results. The differ-

ence between the logarithmic and constant bounds is simply too small. Assuming whether a

value such as 2 is Θ(1), Θ(ln ln(n)) or Θ(ln(n)) would be daring. More significant results in

this respect would be possible by increasing n. The selected values in this section are a trade-off

between the accuracy and running time of the simulation programs.

We have already seen in Figure 3.7 and 3.8 that the bins with higher loads are likely to be

small bins. The experiment depicted in Figure 3.9 provides further indication. Again we have

two capacities, 1 and 10, and we consider different ratios on them. We want to see when the

maximum load is likely to be in a small or large bin. The total number of bins is n = 1, 000,

and the fraction of large bins varies from 0% to 100%. The plot shows, for each point on the
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curve, the fraction of 1, 000 independent runs in which a small bin of capacity 1 was among the

maximally loaded.
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Figure 3.9: Two distinct capacities, location of maximum load.

The maximum load is more likely to be in one of the small bins as long as the pull of the

big bins is not too strong. With about 45% large bins the fraction of small bins containing

the maximum load drops below 50%. Then the probability to choose a big bin is already

4500
4500+550 > 0.89.

3.4.3 The Heavily Loaded Case

In Figure 3.2 on page 51 we have already seen an example for the heavily loaded case (m� C)

when we simulated the uniform game in which all bins have the same capacity. We observed

that, in accordance with Observation 3.3.7, the difference between the maximum load and the

average load m
n is independent of the number of balls m. In this section we find indication that

the same may hold if the bins have random capacities.

In the experiment that is depicted in Figure 3.10 on page 56 we fix n = 10, 000 as well as

a total capacity C, a multiple of n. We then generate individual bin capacities such that the

(expected) total capacity is equal to the prescribed capacity C, using an approach similar to that

in Section 3.4.2, Figure 3.4. For each fixed value of C, we throw 100 · C many balls into the

systems and at certain points throughout this process plot the current deviation of the maximum

load from the average load as a function of the number of balls currently in the system (that is,

we measure this quantity after the (i · C)-th ball for i = 1, 2, . . . , 100). The plot shows one

such curve for a variety of values of C. What we see is essentially a bundle of parallel lines,

indicating that indeed the deviation of the maximum load from the average does not grow with
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the number of balls thrown, apparently regardless of the underlying total capacity. The positions

of the lines also match our intuition and predictions as the lines get closer to zero as the total

capacity increases, meaning the maximum load approaches the average load for large capacities.

Notice that the curves slightly jiggle up and down. One might not expect such behaviour when

tracing a term depending on the maximum load (which ought to be monotonic). However, we

plot the deviation of the maximum load from the average and this quantity may well decrease

(somewhat).
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Figure 3.10: Heavily loaded case: Deviation of maximum from average.

3.4.4 Optimal Probability Distribution

So far the probabilities were chosen to be proportional to the capacities. This is a natural

approach and works well if the differences between the capacities are small. However, if this

is not the case, it might be beneficial to use another strategy and alter the probabilities. Theorem

3.3.9 shows, for instance, that in certain cases in which a constant fraction of all capacities is of

order ln ln(n), a constant maximum load can be achieved by simply ignoring the low-capacity

bins.

Let us consider the following setting: The number of bins is n = 100, half of them have

capacity ci = 1 and the other half (integer) capacity ci = x, 2 ≤ x ≤ 14. The number of

balls is m = C =
∑n
i=1 ci, and the probability of a bin that has capacity c is set to ct

C(t) where

C(t) =
∑n
i=1 c

t
i.

Note that the probabilities sum up to 1 and that bins with the same capacity have the same

probability. Since we have only two different capacities, all probabilities are fixed as soon as the
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probability for one bin is set. For this probability, however, we can choose any value in the open

interval
(
0, 2

n

)
1.

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2  4  6  8  10  12  14

ex
po

ne
nt

capacity of a big bin

optimal exponent

Figure 3.11: Optimal probability distribution: Optimal exponent in case of 50 1-bins and 50 x-
bins.
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The question is, given x, what is the optimal exponent t? The curve in Figure 3.11 represents

our experimental results. In our experiments we simulate the random allocation according to

the altered probability distribution. For every capacity c ∈ {2, 3, ..., 14} and every exponent

t ∈ {1, 1.005, ..., 3}, the maximum load is averaged over 1, 000, 000 repetitions, and the best

values for t are used in the plot. It shows that the optimal exponent can differ considerably

1Let p denote the probability for a bin with capacity c ∈ {1, x} where x ∈ {2, 3, ...}. Since ct

1+xt
can take any value

in (0, 1), it follows:

p =
ct

C(t)
=

ct

n
2
· 1t + n

2
· xt

=
2

n
·

ct

1 + xt
∈
(

0,
2

n

)
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from 1. For the array in which 50 bins have capacity 1 and 50 bins capacity 3, the optimal

exponent is about 2.1.

Figure 3.12 shows the resulting maximum loads as a function of the exponent for different

capacities x. Comparing the values for t = 1 and for the optimal t, the difference in the maximum

loads is up to 0.2.

3.5 Conclusions and Open Problems

We have analysed the multiple-choice game with unit-sized balls and heterogeneous bins assum-

ing that a bin’s load is determined by the number of balls it contains divided by its capacity.

First we assumed that the probabilities of the bins are proportional to their capacities and that

the number of balls equals the total capacity of the bins. For the maximum load of the 2-choice

game we obtained a bound that is not worse than the one in the standard game [4] which is a

special case of our model (all capacities set to one). The generalisation to all d ≥ 2 is still open.

The missing link is Observation 3.3.2 which was only shown for d = 2.

In case of uniform bins, that is, all bins have the same capacity, we also considered the heavily-

loaded case (m � C). Based on [8], we found that the deviation from the average load does

not grow with the number of balls. Simulations suggest that this might generally be the case for

arbitrary capacity distributions. Future work could address this problem analytically.

Other experiments indicate that the constants in the asymptotic bounds are small so that

our strategy can also be employed in applications with a small number of bins. Furthermore,

analytical and experimental results show that it can be beneficial to choose differing probability

distributions over the heterogeneous bins. It would be interesting to continue the work and obtain

more general results, but it seems difficult to analyse these games mathematically.
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Choices

We consider a multiple-choice balls-into-bins game in which the random choices are neither

uniform nor independent. We use Godfrey’s hypergraph-based model [34] and improve and

extend his results. The findings presented in this chapter have appeared in preliminary form in

the following paper:

[6] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into bins

with related random choices. In Proceedings of the 22nd ACM symposium on Parallelism

in algorithms and architectures, SPAA ’10, pages 100–105, New York, NY, USA, 2010.

ACM

The propositions and proofs have been enhanced and new results have been added.

4.1 Introduction

In this chapter a variation of the balls-into-bins game is considered which has been introduced

by Godfrey [34]. In his modelm < n balls have to be allocated into n bins with a maximum load

of one. In contrast to the standard multiple-choice game from [3], he assumes that the choices

of the bins are not uniform and independent at random. Every ball comes with a set of clusters,

where each cluster is simply a set of bins. The ball will randomly pick a cluster and then commit

to one of the least loaded bins within that cluster. For every ball the probability that a fixed bin is

in the chosen cluster has to be roughly the same. Hence, the assignment of the bins to the clusters

can be arbitrary or even regular as long as every bin is in roughly the same amount of clusters.

We look at a generalisation of Godfrey’s model. Again, we assume that each ball comes with

a set of clusters and that it randomly picks a cluster and a least loaded bin within it. In contrast

to Godfrey, we only require that on average (the average is taken over the choices of all balls)

any bin will occur in not too many chosen clusters. This model is captured by what we will
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introduce in Definition 4.2.2 and Definition 4.2.3 as one-sided probabilistic balancedness and

averaged balancedness, respectively. A further generalisation of the original model assumes that

the same cluster can be chosen in multiple successive steps.

4.1.1 Related Work

A detailed overview of the related work can be found in Chapter 2. Here we restrict our attention

to previous work that is relevant to the results presented in this chapter. That is, we concentrate

on protocols that achieve a constant maximum load and on settings where the balls’ choices of

bins are not (necessarily) independent or uniform.

The model used in this paper may be regarded as a generalisation of the d-choice model in

that a cluster represents the d choices of a ball. Applying the bounds for the multiple-choice

game stated in Section 2.3, we obtain that the GREEDY[d] protocol of [3] yields constant load

per bin for d = ln(n) and the GOLEFT protocol of [90] for d = ln ln(n).

Byers et al. [17, 18] consider a model in which the probability distribution over the bins

is not uniform. The motivation for this model comes from the properties of P2P networks like

Chord [84] which apply consistent hashing [43] to allocate items / requests (balls) to peers (bins).

In the basic scenario, the deviation from the average probability 1
n becomes Ω(ln(n)) w.h.p.

Byers et al. show that this imbalance only leads to a small shift in the maximum load [18].

Wieder proves in [94] that the same holds true in the heavily loaded case (m � n) only if the

number of choices d is allowed to grow (slightly) with the imbalance. (For a more detailed

description see Section 2.5.)

4.1.1.1 Godfrey’s Model and Results

Most relevant to our results are the graph-based models of Kenthapadi and Panigrahy [47] and

Godfrey [34] in which the balls’ choices are not uniform and independent. The former consider

the 2-choice game and identify the bins with vertices in an underlying graph G. Each ball can

only choose pairs of bins that are connected by an edge in G. The surprising result is that,

compared to the standard 2-choice game in [3], the bound on the maximum load is basically the

same if the graph is (almost) nε-regular and if ε is not too small. For ε > 8·ln ln(n)
ln(n) , the maximum

load is ln ln(n) + O(ε−1) + O(1) w.h.p. Generally, for ∆-regular graphs they show an upper

bound of ln ln(n) +O
(

ln(n)
ln(∆/ ln4(n))

)
+O(1) which is nearly matched by their lower bound of

ln ln(n) + ln(n)
ln(∆)+ln ln(n) .

Godfrey [34] extends this model to d-uniform multi-hypergraphs in which each hyperedge
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connects d of the n vertices representing the bins. Each ball comes with a possibly different

multi-hypergraph (called cluster set) and chooses one hyperedge (called cluster) i.u.r.. In this

cluster it then allocates itself to a random bin among the least loaded. Note that the clusters are

allowed to overlap and that the number of clusters is not bounded. Yet, similar to [17, 18, 94],

Godfrey demands that the probabilities of the bins must not deviate too much or, more precisely,

that the bins are β-balanced:

Definition 4.1.1 (Definition 2.1 in [34]). A random set of bins B is β-balanced if, for all bins j,

1

β · n
≤ Pr [ j ∈ B ] · E

[
1

|B|
| j ∈ B

]
≤ β

n
.

The main contribution in his paper is the following theorem which upper bounds the number

of balls m such that, w.h.p., the protocol (Algorithm 2) succeeds in finding an allocation with

maximum load equal to one:

Theorem 4.1.2 (Theorem 2.1 in [34]). Let ε > 0, δ ∈ (0, 1), and suppose that for

each ball i, Bi is β-balanced and |Bi| ≥ 26 · (1+ε)2

ε2·δ · ln(n). Let β′ = (1 + ε + o(1)) · β and

α = (1− δ)/d1− ln(β′)
ln(1−(β′−1)/(β′2−1))e. Then with probability 1−O(n−1), the maximum load

is one after placing m = α · n balls, and the maximum load is d 1
αe after placing m = n balls.

The upper bound on the maximum load in the case m = n follows from the first bound by

trivially running the original algorithm d 1
αe times.

A simplified version of Theorem 4.1.2 is:

Corollary 4.1.3. Suppose that for each ball i, Bi is β-balanced and |Bi| ≥ c · ln(n) where c is

a sufficiently large constant. Then with probability 1 − O(n−1), the maximum load is one after

placing m ≤ n
fc(β) balls, where fc(β) ∈ Θ(β · ln(β)) depends solely on β and c.

Proof. In order to prove the bounds on fc(β) = 1
α , we take a closer look at the expression

1−δ
α (from Theorem 4.1.2). For this we use that, for x > 0, 1

x+1 < ln(x + 1) − ln(x) < 1
x

(Lemma 1.1.5).

Upper bound:

1− δ
α

=

1− ln(β′)

ln
(

1− β′−1
β′2−1

)
 =

1− ln(β′)

ln
(

1− β′−1
(β′−1)·(β′+1)

)


=

1− ln(β′)

ln
(

β′

β′+1

)
 =

⌈
1− ln(β′)

ln(β′)− ln(β′ + 1)

⌉

=

⌈
ln(β′ + 1)

ln(β′ + 1)− ln(β′)

⌉
(L. 1.1.5)
< d(β′ + 1) · ln(β′ + 1)e
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Lower bound:

1− δ
α

=

⌈
ln(β′ + 1)

ln(β′ + 1)− ln(β′)

⌉
(L. 1.1.5)
> dβ′ · ln(β′ + 1)e

Therefore,

dβ′ · ln(β′ + 1)e
1− δ

< fc(β) =
1

α
<
d(β′ + 1) · ln(β′ + 1)e

1− δ
.

Since δ and ε are constants and since β′ = (1 + ε+ o(1)) · β, it follows that

fc(β) ∈ Θ(β · ln(β)).

4.1.2 Contributions

Our contributions are the following:

• We improve Godfrey’s upper bound on the number of balls m from n
Θ(β·ln β) to n

Θ(β)

(Theorem 4.3.3). This is asymptotically optimal (β need not be constant) as we show in

Observation 4.3.6.

• We enhance the original model by the concept of runs. In this new model, each ball i tosses

a (biased) coin: With constant probability p, 0 < p < 1, it runs the protocol as described

above, but with the remaining probability it copies the previous ball’s choice Bi−1, that

is, it reuses the previous cluster of bins. In Theorem 4.4.1 we prove the same asymptotic

upper bound on m.

• We introduce relaxed definitions of balancedness (one-sided balancedness and averaged

balancedness) and show that our results hold for these models.

• Aside from the lower bound on the number of balls m, we also show an asymptotically

matching lower bound for the cluster size d in Observation 4.3.5.

• We considerably simplify Godfrey’s original proof. Our proofs are essentially applications

of Chernoff bounds, where [34] employs a relatively complicated coupling argument.

While the concept of balancedness allows one to investigate the balls-into-bins model in

the presence of bounded dependencies, the runs, in addition to the obvious effect of saving on

randomness, are also of practical relevance (e.g. for cloud computing). We are not aware that this
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particular model introducing runs (with or without the concept of balancedness) has previously

been studied.

4.1.3 Motivation

With regards to the dependencies as mentioned above, consider, for example, the case where the

balls and the bins are distributed as points in R2. This is actually a relevant model, since when

designing and analysing e.g. peer-to-peer or cloud-based systems, it is frequently supposed that

the participants (peers in the former case, users and data servers in the latter) are embedded into

some geometric space. Bi will then consist of the bins closest to ball i w.r.t. the embedding and

a given distance metric. In this case, the distribution of bins in the set Bi is not chosen i.u.r.,

and the geographical distance between two bins may determine their probability to be in a joint

set Bi.

As already hinted at, the model can be considered as being motivated by demands arising

in cloud and grid computing. If a cloud or grid provider accepts to run a job, it should place

this job as near as possible to the data being accessed by this job. Otherwise, access latencies

may substantially reduce the performance for this job. Nevertheless, the provider increases the

number of choices by either replicating frequently accessed data to different computing centres,

or by allowing to distribute the data over multiple data centres [71, 87]. Translating back to our

scenario, none of these approaches will generally result in a perfectly uniform and independent

choice of bins for our balls. This model will be analysed in Section 4.3.

The cloud scenario includes an additional extension to the standard balls-into-bins games,

where the selection of bins may or may not depend on the choices of previous balls. It may be

presumed that there is a given probability that the peer accessing the cloud in step i will also be

the peer accessing the network in step i + 1, and therefore, in our setting, that Bi+1 = Bi. The

underlying process is that a new peer in a cloud environment typically moves multiple objects,

like big databases, into the cloud after entering it for the first time. After this initialisation step,

the allocated storage capacity typically stays relatively invariant. These runs are analysed in

Section 4.4.

4.2 Models and Definitions

In this section we introduce notation used in the remaining technical sections. Balls are numbered

1, . . . ,m and bins are denoted b1, . . . , bn. Ball i comes with a set of si many clusters of bins

Bi = {B1, . . . , Bsi}. Each such cluster contains c · ln(n) many bins where c = c(n) is chosen
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so that c · ln(n) is an integer. (In all results c is lower-bounded by a constant and can be chosen

smaller than a constant1.) Each Bi contains arbitrarily many such clusters, subject to it being

β-balanced (see Definitions 4.2.2 and 4.2.3). In a model with runs we assume that every ball i

has the choice between the cluster that was used by ball i − 1 and a newly chosen one from

Bi ∈ Bi. For details see Algorithm 3.

The load vector is defined as before. The load vector LC of a cluster C is the load vector

restricted to the bins in C.

4.2.1 Goodness of Balls

Let EMPTY(B) denote the number of empty bins in any given cluster B.

Definition 4.2.1 (Good and bad balls). For i = 1, . . . ,m, we call the i-th ball good if it finds

strictly more than half of its chosen cluster empty, that is, EMPTY(Bi) >
|Bi|

2 = c
2 · ln(n).

Otherwise we label it as bad.

The factor of 1
2 has been chosen for convenience; in principle any constant would do just as

well. (We do generally not attempt to optimise any constants.) Occasionally the goodness of

balls 1, . . . , i is referred to as the induction hypothesis for ball i+1. Note that the induction base

is trivial.

4.2.2 β-balancedness

Our definition of one-sided β-balancedness is based on Definition 4.1.1, quoted from [34]. Since

we will assume that all clusters have the same size c · ln(n), we simplify the definition slightly.

More importantly, we are able to drop the lower bound 1
β·n .

Definition 4.2.2 (One-sided β-balancedness). For β ≥ 1, a set of clusters Bi is β-balanced

if for all bins j and i.u.r. chosen Bi ∈ Bi,

Pr [ j ∈ Bi ] ≤ β · c · ln(n)

n
.

For the proofs in this chapter it is even sufficient if Pr [ j ∈ Bi ] ≤ β·c·ln(n)
n on average,

where the average is taken over all balls. We call this generalisation of one-sided β-balancedness

averaged β-balancedness:

1If the only restriction on c is c > ĉ for some constant ĉ ≥ 1, then we can choose c to be c := ĉ · dĉ·ln(n)e
ĉ·ln(n)

< 2 · ĉ
(provided that n ≥ 2).
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Definition 4.2.3 (Averaged β-balancedness). For β ≥ 1, a sequence of clusters B1, . . . ,Bm

of sets is averaged β-balanced if for all bins j and i.u.r. chosen B1 ∈ B1, . . . , Bm ∈ Bm,

m∑
i=1

Pr [ j ∈ Bi ] ≤ m · β · c · ln(n)

n
.

The elimination of the lower bound and the relaxation of the upper bound make the model

much more practical. In particular, it is now feasible that every ball’s cluster set consists of

only one cluster. Then the bins’ probabilities in the cluster sum up to 1, whereas the remaining

n − d bins have probability 0. In Godfrey’s model on the other hand, every bin must have a

probability greater than 0 which implies that it must be in at least one cluster of every cluster set.

Additionally, its probability is upper-bounded by β·d
n for each ball.

4.2.3 Protocols / Models

Basic model. Similar to Godfrey’s paper [34], each ball i = 1, . . . ,m runs the protocol

presented in Algorithm 2. It chooses a cluster i.u.r. and allocates itself to a randomly chosen bin

among the bins of lowest load within the cluster.

Algorithm 2 The simple protocol for ball i ∈ {1, . . . ,m}
1: i.u.r. choose a cluster of bins Bi ∈ Bi
2: i.u.r. choose a bin b ∈ Bi of lowest load
3: allocate the ball to bin b

Compared to Godfrey’s results, the main difference is that our results hold for a larger number

of balls m and for averaged β-balanced sequences of clusters (see Theorem 4.3.3 and 4.4.1).

Model with runs. In the extended model, allowing for runs, we consider the algorithm as

described in Algorithm 3. In contrast to Algorithm 2, each ball i reuses the previous cluster

Bi−1 with constant probability p ∈ (0, 1). We assume that there is a randomly preselected set of

bins B0.

Algorithm 3 The extended protocol for ball i ∈ {1, . . . ,m}
1: with constant probability p reuse cluster Bi−1, with the remaining probability 1− p choose

a new cluster Bi ∈ Bi i.u.r.; either way, let B denote the chosen cluster
2: i.u.r. choose a bin b ∈ B of lowest load
3: allocate the ball to bin b
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4.3 Analysis of the Basic Model

4.3.1 Upper Bounds

To ease the analysis of the algorithms we will consider the following variant: For all balls j ∈ [m]

we place a token with label j into each bin b of clusterBj . Then, for all balls j ∈ [m] we allocate

the ball into a least loaded bin i.u.r. chosen from the bins containing a token labelled with j. We

say a token with label j is redeemed if the corresponding bin receives ball j.

Lemma 4.3.1. Assume that we run the simple protocol (Algorithm 2) and that the bin choices are

one-sided averaged β-balanced. Let g be a positive constant. If m ≤ n
g·β and c ≥ 3 · g · (k+ 1),

every bin will receive at most 2·c·ln(n)
g tokens with probability at least 1− n−k.

Proof. Fix any bin b. Consider Bernoulli random variables X1, . . . , Xm with Xq = 1 if b

contains a token with label q, and Xq = 0 otherwise. Let X = X1 + . . .+Xm count the number

of tokens. Since the system is averaged β-balanced, we get the expected value

E[X] =

m∑
q=1

E[Xq] =

m∑
q=1

Pr [Xq = 1 ] =

m∑
q=1

Pr [ b ∈ Bq ] ≤ m · β · c · ln(n)

n
.

Define µ = m·β·c·ln(n)
n . Since m ≤ n

g·β , we have µ ≤ c·ln(n)
g . Using Lemma 1.2.1, we obtain

Pr

[
X ≥ 2 · c · ln(n)

g

]
≤ e−

c·ln(n)
3·g = n−

c
3·g ≤ n−(k+1)

for c ≥ 3 · g · (k + 1). Hence, with probability 1 − n−k no bin receives more than 2·c·ln(n)
g

tokens.

The following lemma relates the number of tokens per bin to the goodness of a ball.

Lemma 4.3.2. Assume that the simple protocol (Algorithm 2) is run and consider any ball i,

i ∈ [m]. Let h > 6 be a constant. If all previous balls are good, if c ≥ 6 · h · k and if every bin

in Bi has at most c·ln(n)
h many tokens, then ball i will be good with probability 1− n−k.

Proof. In order to prove that ball i is good, we need to show that more than half of the bins in Bi

are empty when we throw ball i.

Since every bin in Bi has at most c·ln(n)
h tokens, the total number of tokens in bins from Bi is

at most (c·ln(n))2

h . This immediately gives us a bound on the number of times that bins from Bi

can appear in previously selected sets Bj , 1 ≤ j < i:

i−1∑
j=1

|Bi ∩Bj | ≤
(c · ln(n))2

h
. (4.1)
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Define random variables Yj with Yj = 1 if a token in Bi ∩ Bj is redeemed in step j and

Yj = 0 otherwise. The probability that a particular empty bin in Bj receives the ball (meaning

the token is redeemed) is at most 2
c·ln(n) due to the induction hypothesis that all previous balls

have been good. Hence,

Pr [Yj = 1 ] ≤ |EMPTY(Bi ∩Bj)| · 2
c · ln(n)

≤ |Bi ∩Bj | · 2
c · ln(n)

. (4.2)

Let Y :=
∑i−1
j=1 Yj count the balls in Bi. Using (4.1) and (4.2), we can bound the expected

value by

E[Y ] =

i−1∑
j=1

E[Yj ] =

i−1∑
j=1

Pr [Yj = 1 ] ≤ 2

c · ln(n)
·
i−1∑
j=1

|Bi ∩Bj |

≤ 2

c · ln(n)
· (c · ln(n))2

h
=

2 · c · ln(n)

h

Notice that the Yj are not independent, but negatively correlated and, thus, satisfy the condi-

tions of Lemma 1.2.3. We apply said lemma with µ = 2·c·ln(n)
h and obtain

Pr

[
Y ≥

(
1 +

1

2

)
· µ =

3 · c · ln(n)

h

]
≤ e−

2·c·ln(n)
4·h·3 = n−

c
6·h ≤ n−k

which holds for every c ≥ 6 · h · k. This implies that with a probability of 1 − n−k there are at

most
3 · c · ln(n)

h
<

1

2
· c · ln(n)

many redeemed tokens in Bi and that the i-th ball is good.

Theorem 4.3.3. Letm ≤ n
24·β and c ≥ 72 ·(k+2) where β ≥ 1 and k is some positive constant.

Assume that the bin choices are one-sided (averaged) β-balanced. After running Algorithm 2 for

each ball, the maximum load is 1 with probability at least 1− n−k.

Proof. Since the one-sided β-balanced system is a special case, it is sufficient to prove the

statement for an averaged β-balanced system. For i ∈ [m], let Ei denote the event that balls

1, . . . , i are good. For i ∈ [m], let Fi denote the event that ball i is the first bad ball, that is,

Pr [Fi ] = Pr [ ball i bad | Ei−1 ]. Let F0 denote the event that no ball is bad, i.e., F0 = Em.

If we consider the probability space of all possible combinations of good and bad balls then
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{Fi}i=0,...,m defines a partition. Therefore,

Pr [¬Em ] =

m∑
i=0

Pr [¬Em | Fi ] ·Pr [Fi ]

= Pr [¬Em | F0 ] ·Pr [F0 ] +

m∑
i=1

Pr [¬Em | Fi ] ·Pr [Fi ]

=

m∑
i=1

Pr [¬Em | Fi ] ·Pr [Fi ] =

m∑
i=1

Pr [Fi ] =

m∑
i=1

Pr [ ball i bad | Ei−1 ] .

Fix any i ∈ [m]. In the following we will upper-bound Pr [Fi ] = Pr [ ball i bad | Ei−1 ]. For

this consider the variant of Algorithm 2, described at the beginning of this section, that places

tokens into the bins.

The number of tokens any bin receives can be bounded as follows: Define g := 24. Since

m ≤ n
24·β = n

g·β and c ≥ 72 · (k + 2) = 3 · g · (k + 2), we can apply Lemma 4.3.1 and get that,

with probability 1− n−(k+1), no bin receives more than 2·c·ln(n)
g tokens.

Now we can use this bound to show that, w.v.h.p., ball i is good. Define h := 12. Since

c ≥ 72 · (k + 2) = 6 · h · (k + 2) and since every bin in Bi has at most c·ln(n)
12 = c·ln(n)

h tokens,

we can apply Lemma 4.3.2 and get that ball i is good with probability at least 1− n−(k+2).

Since this holds for all balls, the probability for (at least) one of the m balls being bad is

Pr [¬Em ] =

m∑
i=1

Pr [Fi ] ≤
m∑
i=1

n−(k+2) ≤ n

24 · β
· n−(k+2) < n−(k+1).

Both probabilities together imply that the probability for any bin receiving more than one ball

is bounded by

n−(k+1) + n−(k+1) < n−k.

4.3.2 Lower Bounds

We will provide lower bounds for the cluster size d as well as for number of balls m. In order

to prove the former we will use the following observation. Let Gd denote an arbitrary game in

which the n bins are divided into the same n
d disjoint clusters of size d for every ball i. Thus, all

Bi, i ∈ [m], are identical and 1-balanced.

Observation 4.3.4. Given the number of bins n, fix any integer d > 0 that divides n. Then, for

all d′ ∈ [d− 1], there exists a gameHd′ on n bins in which all clusters have size d′, in which all

cluster sets are 1-balanced, and whose load vector majorises the load vector of game Gd.
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Proof. Assume that the bins in Gd and Hd′ are numbered from 1 to n. We call a bin j, j ∈ [n],

in one game the corresponding bin of bin j in the other game.

We define Hd′ as follows: For every cluster Ci in Gd we add d clusters Ci,j , j ∈ [d], of

size d′ to Hd′ . Let the bins in Ci be numbered from 1 to d, then each cluster Ci,j contains the

(corresponding) d′ bins from j to j + d′ − 1 (mod d). (Note that the cluster set is 1-balanced

since every bin is contained in exactly d′ clusters.)

We use a simple coupling that exploits the fact that the probability for choosing cluster Ci in

game Gd equals the probability that any of the d clusters Ci,j in game Hd′ is selected. Thus, we

can map the random choice of a clusterCi in game Gd to the random choices of the d clustersCi,j

in gameHd′ . Now, whenever cluster Ci and any cluster Ci,j are chosen, the ball in game Gd can

make the optimal choice among the d bins because it sees all of them. In the gameHd′ , however,

the ball can only select one of the d′ bins in Ci,j which possibly leads to a worse choice. Since

the number of balls is identical in Ci and
⋃
j∈[d] Ci,j at all times, the load vector of cluster C is

always majorised by the load vector of
⋃
j∈[d] Ci,j , and since this holds for all clusters in Gd, the

load vector of game Gd is always majorised by the load vector of gameHd′ .

The following observation provides an asymptotically matching lower bound for the cluster

size. It improves on Godfrey’s Theorem 3.1 in [34] and, thus, answers his open question about a

better lower bound.

Observation 4.3.5. Fix the number of bins n ≥ 1, 000 and c = c(n) ∈ [0.8, 1] in such a way

that c · ln(n) is an integer that divides n. If the number of balls is m ≥ 0.4 · n, then, for any

d ∈ {1, 2, ..., c · ln(n)}, there exists a 1-balanced distribution of clusters Bi with |Bi| = d such

that, w.h.p., Algorithm 2 results in a maximum load greater than 1.

Proof. Because of Observation 4.3.4 we only have to prove the case d = c · ln(n). For this we

consider the game Gd.

Similar to Godfrey’s proof of Theorem 3.1 in [34], we can regard the selection of the clusters

as a single-choice balls-into-bins game with q := n
d bins and m = k · n balls. We show that at

least one cluster receives strictly more than d balls if k ≥ 0.4 which implies `max > 1.

In the analysis we assume that k is a constant, but since the maximum load grows with the

number of balls, it follows that the observation holds for any k ≥ 0.4.

Let r := k · c·ln(q·d)
ln(q) and note that r < 2 · k = O(1). The number of balls is

m = k · n = k · q · d = k · q · c · ln(n) = k · q · c · ln(q · d) = r · q · ln(q)
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Theorem 2.2.2 states that then, with probability 1 − o(1), the maximum load `max in any

cluster is

`max > (dr − 1 + α) · ln(q) (4.3)

where α can be any constant in (0, 1) and dr is the unique solution of

fr(x) := 1 + x · (ln(r)− ln(x) + 1)− r = 0.

for which dr > r. Let 0.99 < α < 1 and assume that dr > 1.4. Then, due to n ≥ 1, 000, we

obtain
c · ln(n)

ln(q)
+ 1− α < c · ln(n)

ln(n)− ln(c · ln(n))
+ 0.01 < 1.4 < dr

and finally

`max > (dr − 1 + α) · ln(q) > ln(n).

So, it only remains to show that dr > 1.4 if k ≥ 0.4. For the analysis we vary k, but fix n and

c. Note that then r grows with k and m = k · n. dr should also grow with m because it governs

the lower bound on `max in (4.3). This can be more formally shown by analysing the function

fr(x) which, of course, can also be understood as a function of r:

gx(r) := 1 + x · (ln(r)− ln(x) + 1)− r.

Assuming x > r > 0, it follows from the derivatives

f ′r(x) = (ln(r)− ln(x) + 1) + x ·
(
− 1

x

)
= ln(r)− ln(x) < 0

and

g′x(r) = x · 1

r
− 1 =

x

r
− 1 > 0

that, in order to fulfil fr(x) = 0, an increase in r has to go with an increase in x.

Now we can finish the proof by showing that r ≥ c ·k ≥ 0.32 implies dr > 1.4. For r = 0.32

this follows from

f0.32(1.4) = 1 + 1.4 · (ln(0.32)− ln(1.4) + 1)− 0.32 > 0.013 > 0

70



www.manaraa.com

4.4 Analysis of the Model with Runs

because only a greater x can reduce the function value. And as dr grows with r, dr > 1.4 will

also hold for any r > 0.32.

The next observation provides a matching lower bound for the number of balls.

Observation 4.3.6. The result of Theorem 4.3.3 is asymptotically tight in terms of the number of

balls m.

Proof. Consider the variation of game Gd in which the first cluster B1 has probability β·d
n to be

chosen. (Since we cannot simply set the probabilities, we increase the probability by adding so

many copies of the first cluster B1 until the probability for choosing one of the copies is β·d
n .) If

m > n
β , then the expected number of balls allocated to the bins of B1 will be larger than d.

4.4 Analysis of the Model with Runs

In this section we consider the model in which a cluster is reused by the next ball with constant

probability p (see Algorithm 3).

Theorem 4.4.1. Let k > 0, 0 < p < 1 and c ≥ 216 · k+2
1−p . Assume that the clusters are one-

sided (averaged) β-balanced and that m ≤ 1−p
72·β ·n. After running Algorithm 3 for each ball, the

maximum load will be 1 with probability at least 1− n−k.

Proof. In order to show that all balls are good, we pursue the same approach as in the proof of

Theorem 4.3.3 and consider the variant of Algorithm 3 that uses tokens. That is, each ball ` ∈ [m]

chooses a cluster of bins B` (according to the protocol) and places a token with label ` into every

bin ofB`. Fix any ball i ∈ [m]. In order to upper bound Pr [ ball i bad | balls 1, . . . , i− 1 good ],

we first upper bound the number of tokens that a bin b ∈ Bi receives.

In each step j, Algorithm 3 decides by a (biased) coin toss whether to choose a freshBj ∈ Bj

or to reuse Bj−1. In the following we denote by a run a maximal sequence of steps k, k +

1, . . . , k′ where the algorithm chooses a fresh Bk ∈ Bk, and then uses Bk throughout steps

k, k + 1, . . . , k′ but not k′ + 1. We assume now that we have two different types of token. If the

algorithm chooses a new set (first step of a run) a blue token is used, otherwise (remaining steps

of a run) a red token is used. Then, for all balls j ∈ [i], we allocate the ball into an i.u.r. chosen

bin among the least loaded bins containing a (red or blue) token labelled j.

Define g := 72
1−p . Since m ≤ (1−p)·n

72·β = n
g·β and c ≥ 216

1−p · (k + 2) = 3 · g · (k + 2), we can

apply Lemma 4.3.1 and get that, with probability 1− n−(k+1), no bin receives more than

tmax :=
2 · c · ln(n)

g
=

(1− p) · c · ln(n)

36
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blue tokens.

It remains to bound the number of red tokens. Fix any bin b and assume that b receives

t ≤ tmax many blue tokens. Since, for every blue token, we will bound the number of red tokens

independently, a bound for the combined length of tmax runs is certainly also a bound for t runs.

In the following we can therefore use tmax instead of t.

For 1 ≤ r ≤ tmax, let Yr denote the number of all (red and blue) tokens of the run that

starts with the r-th blue token. Then the Yr, 1 ≤ r ≤ tmax, are geometrically distributed random

variables with Pr [Yr = z + 1 ] = pz ·(1−p) and E[Yr] = 1
1−p . Let Y := Y1+· · ·+Ytmax be the

random variable that counts the red and blue tokens in bin b. Its expected value is E[Y ] = tmax
1−p .

Applying Lemma 1.2.4 with δ = 1, we obtain

Pr [Y > (1 + δ) · E[Y ] ] ≤ exp

(
− tmax

2
· δ2

1 + δ

)
= exp

(
− tmax

4

)
= exp

(
− (1− p) · c · ln(n)

4 · 36

)
≤ n−

(1−p)·c
144 < n−(k+2).

Hence, with a probability of at least 1− n−(k+1) − n · n−(k+2) no bin receives more than

2 · E[Y ] =
2 · tmax
1− p

=
2 · c · ln(n)

36
=
c · ln(n)

18

(red or blue) tokens.

Define h := 18. Since c ≥ 216 · k+2
1−p > 6 · h · (k + 2) and every bin in Bi has at most

c·ln(n)
18 = c·ln(n)

h tokens, we can apply Lemma 4.3.2 and get that ball i is good with probability

at least 1− n−(k+2). Since this holds for all balls, the probability that at least one of the m balls

is bad is

m · n−(k+2) ≤ n · (1− p)
72 · β

· n−(k+2) < n−(k+1).

The probability for the maximum load to exceed 1 is bounded by

n−(k+1) + n−(k+1) + n−(k+1) < n−k.

4.5 Conclusions

In this chapter a variation of the standard balls-into-bins games has been considered in which the

bin choices are non-uniform and dependent. Each ball i = 1, . . . ,m, in turn, runs the following
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protocol: (1) it i.u.r. chooses a cluster of bins Bi ∈ Bi, and (2) it i.u.r. chooses one of the least

loaded bins in Bi and allocates itself to it.

For this protocol we have shown that the maximum load is one with high probability provided

that (i) the cluster size d is roughly Ω(ln(n)), (ii) the bin choices are averaged β-balanced (i.e.,

every bin should expectedly show up in no more than β·m·d
n many of themmany chosen clusters),

and (iii) the number of balls m is upper-bounded by n
24·β .

Finally, we extended our results to a generalised model in which a cluster of bins is reused by

the next ball with a certain probability p. Again, if (i) and (ii) hold and if the number of balls m

is bounded by (1−p)·n
72·β , the maximum load is one with high probability.

Since we restricted our analysis to `max = 1 and m ≤ n
Θ(β) , it remains an open problem to

show tight bounds on the maximum load for m� n
β .
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Environment

In this chapter we investigate how GREEDY[d] performs in a parallel environment. In our model

the balls arrive in batches of size n and the loads of the bins are only updated between batches.

We show that the gap between maximum and average load isO(ln(n)) and therefore independent

of the number of balls thrown.

5.1 Introduction

The major disadvantage of the multiple-choice strategy is that it unfolds its potential only in

sequential settings while many load balancing applications are parallel. To prove the bounds

for the standard multiple-choice game in [3, 8], for example, it is assumed that the m balls

are allocated one after the other and that the bin loads are immediately updated after each

ball. Different strategies have been developed for parallel environments to deal with concurrent

requests [2, 82, 61, 12, 1]. They base their decisions on the number of new requests, allow extra

rounds of communication and in some cases let balls rechoose.

In this chapter we investigate how the bare GREEDY[2] protocol performs in a parallel envi-

ronment in which m ≥ n balls are allocated into n bins. Thus, concurrent requests to the same

bin are answered with the same current load and no additional information like the number of

new requests. We model this by updating the bins only after every n-th ball and prove that the

gap between maximum and average load is still independent of the number of balls1. With high

probability, the gap isO(ln(n)). We show this upper bound form ≤ poly(n). The generalisation

to arbitrary m is outstanding.

In a parallel environment the bare GREEDY[2] protocol naturally performs worse than the best

adapted strategies, but in some situations its simplicity and the avoidance of extra communication

may compensate for the increase in the maximum load.

1In the sequential setting the gap is known to be Θ(ln ln(n)) w.h.p. (Theorem 2.3.2).
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5.1.1 Related Work

Balls-into-bins games are described in the introductory chapter. Results related to the multiple-

choice paradigm are summarised in Chapter 2, parallel strategies in particular in Section 2.4.

Here we give a brief overview of publications that analyse the heavily-loaded case in which

the number of balls m significantly exceeds the number of bins n. The first paper by Berenbrink

et al. [8] explains and applies the main approach which forms the basis of the analyses in [8, 94,

85]. The approach is two-part in that the respective bounds on the maximum load are proven for

a polynomial number of balls first before the result is extended to arbitrary m.

The first part is shown by induction on the number of balls or rather batches, where a batch

consists of n balls. For every batch t, bounds on the distribution are proven based on the hypoth-

esis that such bounds hold for all previous batches τ < t. In each step of this outer induction, an

inner induction is used to derive the bounds on the distribution. This inner induction is a layered

induction which, though a bit more involved, follows the concept described in Section 1.2.3.

The second part applies a short memory lemma which states that two balls-into-bins processes

that start with the same number of balls and with a balanced and unbalanced load vector, respec-

tively, will be stochastically indistinguishable after a certain recovery time2. In the case of the

standard game the recovery time is ∆·poly(n), where ∆ denotes the maximal difference between

any two loads. The lemma is used to reduce the problem for general m to the case m = poly(n).

Following this approach, Berenbrink et al. analyse the standard d-choice game for arbitrary

m > n and bound the gap between maximum and average load by O(ln ln(n)). Wieder shows

in [94] that this bound also holds for non-uniform probabilities if the imbalance in the probability

distribution is compensated by a slight increase in the number of choices d. Talwar et al. apply

a short memory lemma to prove that even in case of weighted balls the gap is independent of m,

provided that the weight distribution fulfils “mild assumptions” [85].

5.1.2 Contributions

We consider a balls-into-bins game in which m balls are thrown into n bins. The process

essentially follows GREEDY[d], but we introduce explicit batches of size n and assume that all

balls within one batch are allocated concurrently. We restrict our analysis to the case d = 2, and

describe a somewhat surprising experimental observation regarding values d > 2 in Section 5.5:

It appears that the larger d, the higher the maximum load.

2In [8, 94, 85] the recovery or mixing time follows from the fact that the underlying Markov process is rapidly mixing,
that is, it rapidly converges to its stationary distribution – regardless of its initial state distribution (see definitions
in [68, 66]). This is shown by a coupling argument.
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It should be noted that [9] uses the concept of batches as well, but that there it simply is a

technique used in the proofs, and that the actual process is unaware of the concept. Here, on

the other hand, the allocation itself uses batches, and each batch is allocated concurrently; that

is, load vectors are updated only every n many balls (an approach that would clearly reduce the

problem to a simple single-choice game if we were to look at only one batch, starting from an

empty system).

Similar to [9], we wish to show that after throwing m balls into n bins the deviation of the

maximum load from the average load, m
n , is O(ln(n)). However, we prove this upper bound

only for m ≤ poly(n). The generalisation to arbitrary m is still outstanding.

5.1.3 Motivation

Due to the nature of load balancing and the number of participants involved, it is natural to

assume that most applications run in parallel environments. For this reason it is not surprising

that the first generalisations of the d-choice game aimed at parallelising the algorithm. The

strategies allow for additional communication between the balls and their chosen bins, where the

messages contain acknowledgments, rejections or just information about the current load and the

number of new requests. The balls base their decision on the returned messages and can also

choose new bins in some protocols.

Even though the number of communication rounds and the adaptations to the algorithm can be

kept quite low, we think it is interesting to see how the unchanged GREEDY[d] protocol performs

in a parallel setting. Naturally it cannot achieve as good a maximum load as the best parallel

strategies, but it may be sufficient in some cases or even superior if extra communication is

inadmissible.

5.2 Result and Outline

We analyse GREEDY[d] in the case where the loads of the bins are only updated every n many

balls. As usual, m balls are placed into n bins, and we assume that the bins are initially empty.

The allocation at time t is given by the load vector directly after the t-th batch. The number of

balls is polynomial bounded in the number of bins, that is, m ≤ nδ with δ being an arbitrary

positive constant.

The main result is Theorem 5.2.1. It implies Corollary 5.2.2 which states that the gap between

maximum and average load is independent of the number of balls m.
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Theorem 5.2.1. Let δ ≥ 1 be an arbitrary constant. Suppose we allocate m ≤ nδ balls (in m
n

batches) to n bins using GREEDY[2]. Then the number of bins with load at least mn + i + γ is

upper bounded by n · exp(−i), w.v.h.p., where γ denotes a suitable constant.

The theorem states that there exists a constant γ ≥ 0 such that the number of bins with load

at least m
n + i + γ is at most n · exp(−i) w.v.h.p. If n < n0 for some constant n0, then the

theorem is immediately satisfied with γ = nδ0. This trivial observation will be used in various

places throughout the chapter, usually whenever certain inequalities hold only in the case n ≥ n0

(for some suitably chosen n0).

We will prove the theorem by induction on t showing that in each step the process maintains

various invariants with probability of at least 1−n−κ. Since there are no more than nδ−1 batches,

with a probability of at least 1− n−κ+δ−1 the invariants hold throughout the process.

Corollary 5.2.2. If m ≤ nδ , the maximum load is m
n +O(ln(n)) w.v.h.p.

The analysis closely follows the paper Balanced Allocations: The Heavily Loaded Case by

Berenbrink, Czumaj, Steger and Vöcking [9].

5.2.1 Definitions and Invariants

The average number of balls per bin at time t is m
n = n·t

n = t. We call bins with fewer than t

balls underloaded and bins with more than t balls overloaded. Frequently we will refer to holes

in the distribution. For a given bin, the number of holes is defined to be the number of balls it is

short of the average load at that point of time.

We will prove that w.v.h.p. the following invariants hold:

• L(t): At time t, there are at most 0.7 · n holes.

• H(t): At time t, there are at most 0.47 · n balls of height at least t+ 5.

In the proof we will assume that L(0), ..., L(t − 1) and H(0), ...,H(t − 1) hold. (Contrary

to [9], we do not need L(t) to show H(t).) We will analyse the underloaded and overloaded

bins separately, the corresponding analyses communicating only through the two invariants from

above. We will finally use invariant H to derive Theorem 5.2.1.

Throughout the analysis, we use the following notation:

Definition 5.2.3. For i, t ≥ 0, α(t)
i denotes the fraction of bins with load at most t − i at time t

and β(t)
i the fraction of bins with load at least t+ i.
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5.2.2 Outline

The underloaded bins are analysed in Section 5.3, the overloaded bins in Section 5.4. Since

our analysis follows the outline of the proof of [9], we will refer to the corresponding results

whenever we state a lemma that is similar to its counterpart in [9]. We sometimes have to

use different parameters, and where that substantially changes the proof, the corresponding

statements are reproven. In the cases where that is not necessary, the proofs are omitted.

We should point out that our approach to bounding the overloaded bins is quite different from

that in [9]. In order to make that proof more accessible, several longish and mostly technical

lemmas are placed in separate sections (5.4.3 and 5.4.4).

Finally, in Section 5.5 we present a simulation with a surprising outcome: As expected, the

2-choice algorithm performs better than the single-choice algorithm, but any further increase in d

results in a higher maximum load.

5.3 Analysis of the Underloaded Bins

In this section we analyse the distribution of the holes. We prove the following two invariants for

time t ≥ 0. Let c1 and c2 denote suitable constants with c1 ≤ c2.

• L1(t): For 1 ≤ i ≤ c1 · ln(n), α(t)
i ≤ 1.6 · 0.3i.

• L2(t): For i ≥ c2 · ln(n), α(t)
i = 0.

Invariants L1(t) and L2(t) imply L(t) as the number of holes at time t is at most

bc2·ln(n)c∑
i=1

1.6 · 0.3min(i,dc1·ln(n)e) · n ≤ 0.7 · n

for n large enough. We shall now prove that L1(t) and L2(t) hold w.v.h.p. if d = 2.

Lemma 5.3.1 (Lemma 2.1 in [9]). Let ` be an arbitrary integer and assume that after batch t−1

there exist (at most) a` · n bins with at most ` balls and (at most) a`−1 · n bins with at most `− 1

balls. Suppose that b is a bin with load exactly ` after batch t− 1. Then for each ball of batch t

the probability to be placed into bin b by GREEDY[2] is (at least)

2− a` − a`−1

n
.

The proof is similar to the one of Lemma 2.1 in [9].
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Observation 5.3.2 (Observation 2.2 in [9]). The probability that a ball from batch t goes to any

fixed bin with load at most t− 4 is at least 1.9
n , unless invariant L1(t− 1) fails.

Proof (copied and adapted from [9], page 1357). Applying invariant L1(t−1), there are at most

α
(t−1)
i ·n ≤ 1.6 ·0.3i ·n bins with load at most (t−1)− i after batch t−1 for every 1 ≤ i ≤ c1 ·

ln(n). Since the load information is only updated between the batches, this upper bound holds

for all balls from batch t. Now, applying Lemma 5.3.1 yields that the probability that a ball from

batch t is assigned to a bin with load at most (t− 1)− i is at least

2− α(t−1)
i − α(t−1)

i+1

n
≥ 2− 1.6 · 0.3i − 1.6 · 0.3i+1

n

For i ≥ 3, this probability is larger than 1.9
n .

This observation is used in the proof of the next lemma which upper bounds the size of the

deepest holes.

Lemma 5.3.3 (Lemma 2.3 in [9]). Let t ≥ 0. Suppose the probability that one of the invariants

L1(0), ..., L1(t − 1) fails is at most n−κ
′

for κ′ ≥ 1. For any fixed κ > 0, there exist constants

c0, c1, c2, c3 (solely depending on κ) such that

• there are at most n · 1.6 · 0.3i bins containing at most t− i balls, for c0 < i ≤ c1 · ln(n),

and

• every bin contains at least t− c2 · ln(n) balls,

with probability at least 1− n−κ − n−κ′ , provided n ≥ c3.

We omit the proof because it is almost identical to the proof of Lemma 2.3 in [9]. The only

detail changed is the bound for the number of bins with at most t − i balls. It was 0.18 · 3−i+2

and is now 1.6 · 0.3i. Since the result of Observation 5.3.2 coincides with Observation 2.2 in [9],

the major part of the proof is the same. Only in the last part, where we replace the old bound

with the new bound, we need to adapt c0 and set it to c0 = 390 which, however, does not change

the statement of the Lemma.

L2(t) is already proven by the second part of Lemma 5.3.3. The first part shows L1(t), but

only for i > c0. For the remaining cases 1 ≤ i ≤ c0, we will use the recursive formula from the

next lemma to prove α(t)
i ≤ 1.6 · 0.3i. The lemma is similar to Lemma 2.4 in [9], but statement

and proof are easier because here the batches are not divided into sub-batches.

Lemma 5.3.4 (Lemma 2.4 in [9]). Let ε > 0 and let ` be a positive integer. Suppose for i =

0, ..., 4 there are at most ai · n bins with load at most ` − i at time t − 1. Then, at time t, the
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number of bins with load at most ` is at most g(0) ·n, w.v.h.p., where the function g is recursively

defined by

g(i) =

 ai if i = 4

(1 + ε) · (g(i+ 1) + (ai − g(i+ 1)) · E) otherwise,

where

E = exp(−(2− g(i+ 1)− ai)).

We omit the proof because it is only a simplified version of the one in [9].

The recursive formula g(i) enables us to prove L1(t) for every i ∈ {1, . . . , c0 − 1}. First

assume i ∈ {2, ..., c0 − 1} and set (a0, ..., a4) := (α
(t−1)
i−1 , ..., α

(t−1)
i+3 ) where α(t−1)

i−1 , ..., α
(t−1)
i+3

are the bounds of invariant L1(t − 1). Choosing ε = 0.001 and running a C program that

implements g(i) and gets (a0, ..., a4) as input, we obtain

α
(t)
i ≤ g(0) ≤ 1.6 · 0.3i

for all i ∈ {1, . . . , c0 − 1}. Thus, invariant L(t) is shown for i ≥ 2.

In the case i = 1 we cannot apply this approach because a0 would correspond to α(t−1)
0 and

would therefore not be covered by invariant L1(t−1). The next lemma provides an upper bound

on α(t−1)
0 based on invariant H(t− 1).

Lemma 5.3.5 (Lemma 2.5 in [9]).

Suppose H(t− 1) is fulfilled. Let (a0, ...., a4) := (α
(t−1)
0 , ..., α

(t−1)
4 ). Then

a0 ≤ 1− a1 + a2 + a3 + a4 − 0.47

4
.

Proof (copied and adapted from Lemma 2.5 in [9]). At any time τ ≥ 0, the number of holes at

time τ is Aτ =
∑
j≥1 α

(τ)
j ·n. Since the number of balls above the average height is equal to the

number of holes, we can conclude that Aτ also corresponds to the number of balls with height at

least τ + 1 at time τ . Now, suppose invariant H(τ) holds. Then, there are at most Bτ = 0.47 · n

balls of height at least τ + 5 at time τ . Combining these two bounds, the number of balls with

height τ + 1, τ + 2, τ + 3 or τ + 4 is lower-bounded by Aτ − Bτ . This implies that at least

(Aτ − Bτ )/4 bins contain more than τ balls at time τ . As a consequence, the number of bins
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containing at most τ balls is upper-bounded by n− (Aτ −Bτ )/4. Hence,

α
(τ)
0 · n ≤ n− Aτ −Bτ

4
≤ n ·

(
1−

∑4
j=1 α

(τ)
j − 0.47

4

)

Finally, setting τ = t− 1 and α(τ)
j = aj gives the lemma.

Lemma 5.3.6. If L(0), ..., L(t− 1) and H(t− 1) hold, then L(t) holds w.v.h.p.

Proof (copied and adapted from [9], page 1361). Since all other cases are already covered by

the previous results in this section, it remains to showL(t) for i = 1. The proof uses Lemma 5.3.4

and 5.3.5.

Again, using the C program, we verify g(0) ≤ 1.6 · 0.3 for all choices of ai′ ∈ [0, 1.6 · 0.3i′ ],

1 ≤ i′ ≤ 4, and a0 ∈ [0, 1 − 1
4 · (a1 + a2 + a3 + a4 − 0.47)]. For this purpose we need to

discretise the domains of the ai’s. For the discretisation, we use the monotonicity of g(0): The

term g(0) is monotonically increasing in each of the terms a0, ..., a4. Therefore, it suffices to

check the parameters a1, ..., a4 in discrete steps of a suitable size δ > 0 while assuming

a0 = 1− a1 + a2 + a3 + a4 − 0.47− 4 · δ
4

.

Choosing ε = 0.001 and δ = 0.002, the C program confirms g(0) ≤ 1.6 · 0.3 in all cases.

5.4 Analysis of the Overloaded Bins

In this section we prove invariant H(t) which concerns the overloaded bins. It states that there

are not more than 0.47 · n balls with height at least t + 5. The proof is based on the induction

hypothesis that the invariants H(τ) and L(τ) hold for all τ < t, especially L(t − 1). Thus, we

assume that there are at most 0.7 · n holes at time t − 1 which implies that there at most 0.7 · n

balls above level t− 1.

Almost all lemmas in this section are new. Yet, the framework of the proof is again similar

to [9]: We show two invariants H1(t) and H2(t) that imply H(t) and also Theorem 5.2.1. In

order to formulate these invariants, we first define two functions h and f :

Definition 5.4.1 (Functions h and f ; [9], page 1362). Define

h(i) := 67 · 0.34i.

Let ` denote the smallest integer i such that h(i) ≤ n−0.9 and let σ ≥ 1 denote a suitable
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constant (that will be specified later). For i ≥ 4, define:

f(i) :=


h(i) for 4 ≤ i < `

max{h(i), 1
3 · n

−0.9} for i = `

σ · n−1 for i = `+ 1

The next observation summarises a few properties of f .

Observation 5.4.2.

(1) f(`) = h(`)

(2) f(i+ 1) = 0.34 · f(i) for 4 ≤ i ≤ `− 1

(3) f(`+ 1) ≤ 0.34 · f(`) = h(`+ 1) (for sufficiently large n)

Proof. Property (1), that is f(`) = max{h(`), 1
3 · n

−0.9} = h(`), follows from

h(`) = 0.34 · h(`− 1) > 0.34 · n−0.9 >
1

3
· n−0.9.

Property (2): Due to (1) and the definition of f , f(i) = h(i) as well as f(i + 1) = h(i + 1)

hold for all i ∈ {4, ..., `− 1}. Therefore,

f(i+ 1) = 67 · 0.34i+1 = 67 · 0.34i · 0.34 = 0.34 · f(i)

Finally, (3) holds (for sufficiently large n) because

f(`)

f(`+ 1)
≥ n−0.9

3 · σ · n−1
=
n0.1

3 · σ
≥ 0.34−1.

The invariants H1(t) and H2(t) are defined as follows:

• H1(t): β(t)
i ≤ f(i) for 5 ≤ i ≤ `,

• H2(t):
∑
i>` β

(t)
i ≤ σ · n−1.

Invariant H1(t) implies that the number of balls decreases exponentially with each level,

dropping below n−0.9 on level t + `. Invariant H2(t) addresses the balls above level t + ` and

claims that their number is bounded by a constant σ.
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Observation 5.4.3. H1(t) and H2(t) imply H(t).

Proof. The number of balls on level t+ 5 and higher is bounded by

`+1∑
i=5

f(i) · n
(O.5.4.2)

≤
`+1∑
i=5

h(i) · n = n · 67 · 0.345 ·
`−4∑
i=0

0.34i

(L.1.1.3)
< n · 67 · 0.345 · 1

1− 0.34
< 0.47 · n

for sufficiently large n.

Observation 5.4.4. If L(t), H1(t) and H2(t) hold w.v.h.p. for all t, then Theorem 5.2.1 is

fulfilled.

Proof. First we show that the number of bins with load at least mn + i + 5 is upper bounded by

n · e−i: From Definition 5.4.1 and Observation 5.4.2 it follows that, for i ≥ 5, the fraction βi

of balls on level i is upper-bounded by h(i). Thus, it suffices to show that e−k ≥ h(k + 4) for

k ≥ 1:

1.08k ≥ 0.9 ⇒ e−k · 0.34−k ≥ 67 · 0.344 ⇔ e−k ≥ h(k + 4) = 67 · 0.34k+4

It remains to prove that this upper bound holds w.v.h.p. for all t ≤ nδ

n = nδ−1. This follows

directly from the statement that L(t), H1(t) and H2(t) hold w.v.h.p. for all t.

We will prove that H1(t) and H2(t) hold w.v.h.p. if H1(0), ...,H1(t − 1), H2(t − 1) and

L(t− 1) are fulfilled. The invariants for t− 1 in particular provide us with properties of the load

distribution which all balls of batch t base their decisions on. For convenience, the upper bounds

derived from L(t−1),H1(t−1) andH2(t−1) are bundled in the function f̂ which is introduced

in Definition 5.4.5. The subsequent Observation 5.4.6 proves that f̂(i) indeed upper-bounds the

fraction of balls on level t+ i, 0 ≤ i ≤ `, before batch t is thrown.

Definition 5.4.5.

f̂(i) =


1 for i = 0

0.7
i+1 for 1 ≤ i ≤ 4

f(i+ 1) for 5 ≤ i ≤ `

Observation 5.4.6. Assume that the induction hypothesis holds. Then, at time t− 1, the fraction

of bins on level t+ i, 0 ≤ i ≤ `, is bounded by f̂(i).

Proof. For i = 0, the fraction of bins that have a ball on level t+ 0 is trivially bounded by 1; i.e.

all bins could have a ball there.
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L(t− 1) implies that there are at most 0.7 · n balls above level t− 1 at time t− 1. From this

it follows that, for i > 0, there are at most 0.7
i+1 · n balls of height at least t + i. In the definition

of f̂ we use this bound for i = 1, ..., 4.

Finally, for i = 5, ..., `, we simply use invariant H1(t− 1).

f̂ has the following properties:

Observation 5.4.7.

(1) 2 · f̂(i− k) ≤ k for k ∈ {1, ..., i} and i ∈ {2, ..., `}

(2) f̂(i) ≤ h(i+ 1) for all i ∈ {0, ..., `}

Proof. (1) If k ≥ 2, this statement is obviously true. Assume k = 1. If i ≥ 6, then

2 · f̂(i− 1) ≤ 2 · f̂(6− 1) = 2 · f(6) = 2 · 67 · 0.346 < 0.21 < 1

and if 2 ≤ i ≤ 5, then

2 · f̂(i− 1) = 2 · 0.7

i
≤ 1.4

2
= 0.7 < 1.

(2) We consider all cases:

f̂(0) = 1 < 67 · 0.34

f̂(i) =
0.7

i+ 1
< 67 · 0.34i+1 = h(i+ 1) for i ∈ {1, 2, 3, 4}

f̂(i) = f(i+ 1) = h(i+ 1) for i ∈ {5, ..., `− 2}

f̂(`− 1) = f(`)
(O.5.4.2)

= h(`)

f̂(`) = f(`+ 1) ≤ σ

n
< n−0.9 · 0.342 ≤ h(`+ 1) for n large enough

Throughout the proofs of H1(t) and H2(t) the following notation will be used.

Definition 5.4.8 (Bi,k, Zb,i,k). For all k ∈ {1, ..., t + i}, we denote the set of bins that have

exactly t + i − k balls at time t − 1 with Bi,k. Bi,0 is defined as the set of all bins with at least

t+ i balls.

For all k ∈ {0, ..., t + i}, we define Zb,i,k to be the random variable that is 1 if bin b ∈ Bi,k

receives at least k balls with batch t and 0 otherwise.
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5.4.1 Proof of H1(t)

In order to prove H1(t) we have to show β
(t)
i ≤ f(i) for i ∈ {5, ..., `}. Fix any such i. Let Q

denote the number of bins that contain at least t+ i balls at time t− 1, and R the number of bins

that reach level t + i with batch t for the first time. Observe that β(t)
i · n ≤ Q + R. Thus, it

suffices to show Q+R ≤ f(i) · n.

Observation 5.4.9. Q ≤ 0.34 · f(i) · n for 5 ≤ i ≤ `.

Proof. Applying invariant H1(t− 1), we obtain

Q ≤ β(t−1)
i+1 · n ≤ f(i+ 1) · n

(O.5.4.2)

≤ 0.34 · f(i) · n.

The more difficult task is to bound R. This will be done in Lemma 5.4.11. In its proof we

will use the functions defined next.

Definition 5.4.10. We define

φ(i, k) :=
f̂(i− k)

f(i)
·
(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· e
−2·f̂(i−k)

1− 2·f̂(i−k)
k+1

and

Φ(i) :=

i∑
k=1

φ(i, k).

Moreover, we define

Φk2k1(i) :=

k2∑
k=k1

φ(i, k)

so that we will be able to partition Φ(i).

The following lemma bounds R w.v.h.p. The lemmas needed to prove the bound will be

provided in Section 5.4.3.

Lemma 5.4.11. Let i ∈ {5, ..., `} and let κ be any positive constant. Then R < 0.66 · f(i) · n

holds with probability 1− n−κ, provided that n is sufficiently large.

Proof. The number R of bins that have at least t + i balls after batch t but not before can be

written as the sum

R =

t+i∑
k=1

∑
b∈Bi,k

Zb,i,k.

85



www.manaraa.com

5 Load Balancing in a Parallel Environment

Due to the linearity of expectation we obtain

E[R] =

t+i∑
k=1

∑
b∈Bi,k

E[Zb,i,k] =

t+i∑
k=1

∑
b∈Bi,k

Pr [Zb,i,k = 1 ]

(L.5.4.21)

≤
i∑

k=1

n · f̂(i− k) ·Pr

[
B

(
2

n
· f̂(i− k), n

)
≥ k

]

= n · f(i) ·
i∑

k=1

f̂(i− k)

f(i)
·Pr

[
B

(
2

n
· f̂(i− k), n

)
≥ k

]

= n · f(i) ·
i∑

k=1

f̂(i− k)

f(i)
·
n∑
j=k

(
n

j

)
·

(
2 · f̂(i− k)

n

)j
·

(
1− 2 · f̂(i− k)

n

)n−j
(L.1.1.4)

≤ n · f(i) ·
i∑

k=1

f̂(i− k)

f(i)
·
n∑
j=k

(
n

j

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)j
· e−2·f̂(i−k)

(L.5.4.17)
< n · f(i) ·

i∑
k=1

f̂(i− k)

f(i)
·
(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· e
−2·f̂(i−k)

1− 2·f̂(i−k)
k+1

(D.5.4.10)
= n · f(i) · Φ(i)

(L.5.4.18)

≤ n · f(i) ·max{Φ(5),Φ(6)}
(D.5.4.10)

= n · f(i) ·max{Φ4
1(5) + Φ5

5(5),Φ1
1(6) + Φ5

2(6) + Φ6
6(6)}

(L.5.4.19)
< n · f(i) ·max{0.1583 + 0.1779, 0.1897 + 0.0592 + 0.1628}

= n · f(i) ·max{0.3362, 0.4117} = n · f(i) · 0.4117

Since the Zb,i,k are negatively correlated, Chernoff bounds (Lemma 1.2.3) can be applied.

For every ε ∈ (0, 1],

Pr [R ≥ (1 + ε) · 0.4117 · f(i) · n ] ≤ e−0.4117·f(i)·n·ε2/3 ≤ e−0.4117·f(`)·n·ε2/3

≤ e−0.4117·n−0.9·n·ε2/9 < e−0.0457·n0.1·ε2

≤ n−κ

where the last inequality holds for any given κ and ε > 0, provided that n is sufficiently large.

We choose ε = 0.6 and get Pr [R ≥ 0.66 · f(i) · n ] ≤ n−κ.

Corollary 5.4.12. Invariant H1(t) holds w.v.h.p.

Proof. From Observation 5.4.9 and Lemma 5.4.11 it follows for i ∈ {5, ..., `} that

β
(t)
i · n ≤ Q+R ≤ (0.34 + 0.66) · f(i) · n = f(i) · n
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with the probability given in Lemma 5.4.11.

5.4.2 Proof of H2(t)

In order to bound the number of balls above level t + `, we will show that, w.v.h.p., no ball of

batch t will have a height above this threshold. However, should this nevertheless happen, then

it is likely that the according bins will not receive many such balls.

Definition 5.4.13. Define the random variables

• Xt which is one if at least one ball of batch t is allocated to a level greater than t+ `, and

zero otherwise;

• Yt which counts the number of balls from batch t that have height greater than t+ `;

• Xt,`,λ (for any positive integer λ) which is one if at least one bin with at most t + ` − λ

balls at time t− 1 reaches level t+ `+ 1 or higher with the t-th batch;

• Yt,`,λ which counts the number of balls from batch t that fall into a bin with at least t+`−λ

balls at time t− 1.

In the next two lemmas we will bound the probabilities for the events Yt,`,λ ≥ γ (for

constant γ), Xt = 1 and Xt,`,λ = 1. They will be used to prove H2(t) in Lemma 5.4.16.

Lemma 5.4.14. Let λ ≥ 1 be an integer constant (λ � `) and let Yt,`,λ be the number of balls

that fall into bins with load at least t+ `− λ at time t− 1. Then for any constant γ:

Pr [Yt,`,λ ≥ γ ] ≤ n−0.7·γ

Proof. The probability that any ball of batch t falls into a bin of load at least t+ `−λ is bounded

by f̂(` − λ)2. The probability that at least γ balls of the batch fall into such bins is therefore

bounded by

Pr [Yt,`,λ ≥ γ ]
(L.1.1.2)

≤
(
e · n · f(`+ 1− λ)2

γ

)γ (D.5.4.1)

≤

(
e · n
γ
·
(

n−0.9

0.34λ−1

)2
)γ

=

(
e · n−0.8

γ · 0.342·(λ−1)

)γ
=

(
e

γ · 0.342·(λ−1)

)γ
· n−0.8·γ < n−0.7·γ .
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Lemma 5.4.15.

Pr [Xt = 1 ] ≤ n−0.9

For λ ≥ 2,

Pr [Xt,`,λ = 1 ] ≤ n−0.8·λ+1.

Proof. The probability for Xt = 1, that any ball of batch t will have height at least t+ `+ 1, is

bounded by the sum of the bins’ probabilities to receive a ball on this level.

Pr [Xt = 1 ] ≤
t+`+1∑
k=0

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ]

(Recall that B`+1,0 contains all bins on level t+ `+ 1 and higher at time t− 1.)

The probability for Xt,`,λ = 1, that a bin from level `−λ or lower receives enough balls with

batch t to reach level ` + 1, is bounded by the sum of the probabilities for the particular bins to

reach this level.

Pr [Xt,`,λ = 1 ] ≤
t+`+1∑
k=λ

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ]

In both cases, applying Lemma 5.4.21 yields the results.

Lemma 5.4.16. Invariant H2 holds w.v.h.p. over all batches.

Proof (copied and adapted from [9], page 1364). Lemma 5.4.15 states that

Pr [Xt = 1 ] ≤ n−0.9.

Let λ ≥ 2 be an integer constant. Lemma 5.4.15 states that the probability that any bins from

level ` − λ or lower reach level ` + 1 is at most n−0.8·λ+1, and Lemma 5.4.14 states that the

probability that γ balls fall into bins above level `− λ is at most n−0.7·γ . It follows that

Pr [Yt ≥ γ ] ≤ n−0.8·λ+1 + n−0.7·γ

and therefore Yt = O(1), w.v.h.p.

Thus, we can assume that there exists a suitable constant j so that Yt ≤ j. A violation of

H2(t) implies that the bins with load at least t+ `+ 1 contain more than σ balls of height at least

t+ `+ 1. Observe that these balls must have been placed during the last σ rounds or one of the

invariants H2(1), ...,H2(t− 1) is violated. That is, if H2(1), ...,H2(t− 1) hold, then a violation
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of H2(t) implies that j ·
∑t
τ=t−σXτ ≥ σ. The probability for this event is at most

Pr

[
t∑

τ=t−σ
Xτ ≥

σ

j

]
≤
(
σ

σ/j

)
·
(

1

n0.9

)σ/j
≤
(
e · j
n0.9

)σ/j
≤ n−κ̃

for any constant κ̃, provided that n is sufficiently large. Consequently, invariant H2 holds,

w.v.h.p., over all batches.

This completes the proof of Theorem 5.2.1. It follows from Observation 5.4.4 because L(t),

H1(t) and H2(t) hold w.v.h.p. (Lemma 5.3.6, Corollary 5.4.12 and Lemma 5.4.16).

5.4.3 Lemmas Used for Proving H1(t)

Lemma 5.4.17. Let i ∈ {5, ..., `} and k ∈ {1, ..., i}. Then:

n∑
j=k

(
n

j

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)j
<

(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· 1

1− 2·f̂(i−k)
k+1

Proof. Consider the quotient of two successive summands:

(
n
j+1

)
·
(

2·f̂(i−k)

n−2·f̂(i−k)

)j+1

(
n
j

)
·
(

2·f̂(i−k)

n−2·f̂(i−k)

)j =
(n− j) · 2 · f̂(i− k)

(j + 1) · (n− 2 · f̂(i− k))

≤ (n− k) · 2 · f̂(i− k)

(k + 1) · (n− 2 · f̂(i− k))

(O.5.4.7)

≤ 2 · f̂(i− k)

k + 1

(O.5.4.7)
< 1

From this we can derive the statement:

n∑
j=k

(
n

j

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)j

≤
(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
·
n−k∑
µ=0

(
2 · f̂(i− k)

k + 1

)µ

<

(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
·
∞∑
µ=0

(
2 · f̂(i− k)

k + 1

)µ
(L.1.1.3)

=

(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· 1

1− 2·f̂(i−k)
k+1
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Lemma 5.4.18. Let 6 ≤ i ≤ `. The terms

Φi−5
1 (i) =

i−5∑
k=1

f̂(i− k)

f(i)
·
(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· e
−2·f̂(i−k)

1− 2·f̂(i−k)
k+1

,

Φi−1
i−4(i) =

i−1∑
k=i−4

f̂(i− k)

f(i)
·
(
n

k

)
·

(
2 · f̂(i− k)

n− 2 · f̂(i− k)

)k
· e
−2·f̂(i−k)

1− 2·f̂(i−k)
k+1

Φii(i) =
f̂(i− i)
f(i)

·
(
n

i

)
·

(
2 · f̂(i− i)

n− 2 · f̂(i− i)

)i
· e
−2·f̂(i−i)

1− 2·f̂(i−i)
i+1

=
1

f(i)
·
(
n

i

)
·
(

2

n− 2

)i
· e−2

1− 2
i+1

are maximal for i = 6.

Proof. In all cases we will show that Φk2k1(i + 1) ≤ Φk2k1(i) so that Φk2k1(6) must be indeed the

maximum. We will often use that k and i are bounded: k1 ≤ k ≤ k2, 6 ≤ i ≤ `. Additionally,

we will make use of:

(1) 0.34−k

k+1 = 2.9411...k

k+1 grows with k.

(2) If k ∈ {i− 4, ..., i− 1} and i ≥ 6, then (k+ 1) · (i− k+ 1) = i+ 1 + k · (i− k) is minimal

for k = i− 1.

Case Φi−5
1 (i): Note that k ≤ i− 5 implies i− k ≥ 5 and therefore

f̂(i− k) = f(i− k + 1) = 67 · 0.34i−k+1.

We use

φ(i+ 1, k + 1)

φ(i, k)
=

f̂(i+1−(k+1))
f(i+1) ·

(
n
k+1

)
·
(

2·f̂(i+1−(k+1))

n−2·f̂(i+1−(k+1))

)k+1

· e
−2·f̂(i+1−(k+1))

1− 2·f̂(i+1−(k+1))
k+1+1

f̂(i−k)
f(i) ·

(
n
k

)
·
(

2·f̂(i−k)

n−2·f̂(i−k)

)k
· e−2·f̂(i−k)

1− 2·f̂(i−k)
k+1

=
f(i)

f(i+ 1)
· n− k
k + 1

· 2 · f̂(i− k)

n− 2 · f̂(i− k)
·

1− 2·f̂(i−k)
k+1

1− 2·f̂(i−k)
k+2

(O.5.4.7)

≤ 1

0.34
· 1

k + 1
· 2 · f̂(i− k)

1
·

1− 2·f̂(i−k)
k+1

1− 2·f̂(i−k)
k+2

<
2 · 67 · 0.34i−k+1

0.34 · (k + 1)

(1)

≤ 2 · 67 · 0.34i−(i−5)+1

0.34 · (i− 5 + 1)

=
2 · 67 · 0.345

i− 4
≤ 2 · 67 · 0.345

6− 4
= 67 · 0.345 < 0.31
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and

φ(i+ 1, 1)

φ(i, 1)
=

f̂(i+1−1)
f(i+1) ·

(
n
1

)
·
(

2·f̂(i+1−1)

n−2·f̂(i+1−1)

)1

· e
−2·f̂(i+1−1)

1− 2·f̂(i+1−1)
1+1

f̂(i−1)
f(i) ·

(
n
1

)
·
(

2·f̂(i−1)

n−2·f̂(i−1)

)1

· e−2·f̂(i−1)

1− 2·f̂(i−1)
1+1

=
2 · f̂(i)

2 · f̂(i− 1)
· n− 2 · f̂(i− 1)

n− 2 · f̂(i)
· e−2·f̂(i)

e−2·f̂(i−1)
·

1− 2·f̂(i−1)
2

1− 2·f̂(i)
2

<
f̂(i)

f̂(i− 1)
· e2·f̂(i−1)−2·f̂(i) · 1− f̂(i− 1)

1− f̂(i)

< 0.34 · e134·0.34i−134·0.34i+1

= 0.34 · e134·0.34i·(1−0.34)

≤ 0.34 · e134·0.346·0.66 < 0.39

to obtain:

Φi+1−5
1 (i+ 1) =

i+1−5∑
k=1

φ(i+ 1, k) =

i−5∑
k=0

φ(i+ 1, k + 1)

= φ(i+ 1, 1) +

i−5∑
k=1

φ(i+ 1, k + 1)

< 0.39 · φ(i, 1) +

i−5∑
k=1

0.31 · φ(i, k) <

i−5∑
k=1

φ(i, k) = Φi−5
1 (i)

Case Φi−1
i−4(i): Note that since k ∈ {i − 4, ..., i − 1}, we have 1 ≤ i − k ≤ 4 and therefore

f̂(i− k) = 0.7
i−k+1 .

We can reuse the first lines from the previous case to prove a useful inequality:

φ(i+ 1, k + 1)

φ(i, k)
≤ 1

0.34
· 1

k + 1
· 2 · f̂(i− k)

1
<

2 · 0.7
0.34 · (k + 1) · (i− k + 1)

(2)

≤ 2 · 0.7
0.34 · (i− 1 + 1) · (i− (i− 1) + 1)

=
1.4

0.34 · i · 2

≤ 1.4

0.34 · 6 · 2
< 0.35

We obtain:

Φi+1−1
i+1−4(i+ 1) =

i+1−1∑
k=i+1−4

φ(i+ 1, k) =

i−1∑
k=i−4

φ(i+ 1, k + 1)

<

i−1∑
k=i−4

0.35 · φ(i, k) <

i−1∑
k=i−4

φ(i, k) = Φi−1
i−4(i)
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Case Φii(i): From

Φi+1
i+1(i+ 1)

Φii(i)
=

1
f(i+1) ·

(
n
i+1

)
·
(

2
n−2

)i+1

· e−2

1− 2
i+1+1

1
f(i) ·

(
n
i

)
·
(

2
n−2

)i
· e−2

1− 2
i+1

=
f(i)

f(i+ 1)
· n− i
i+ 1

· 2

n− 2
·

1− 2
i+1

1− 2
i+2

<
1

0.34
· 2

i+ 1
· i+ 1− 2

i+ 2− 2
· i+ 2

i+ 1
≤ 1

0.34
· 2

6 + 1
· 6− 1

6
· 6 + 2

6 + 1

=
1

0.34
· 80

294
< 0.81

follows that Φi+1
i+1(i+ 1) < 0.81 · Φii(i).

Lemma 5.4.19. If n ≥ 29, then:

Φ4
1(5) < 0.1583

Φ5
5(5) < 0.1779

Φ1
1(6) < 0.1897

Φ5
2(6) < 0.0592

Φ6
6(6) < 0.1628

Proof. Define δk to be 0.01 if k = 1 and δk = 0 otherwise. Then for n ≥ 29,

(1) n·(n−1)·...·(n−k+1)

(n−2·f̂(5−k))k
< 1 + δk for k ∈ {1, 2, 3, 4}

because, for k = 1,

n < n+ 0.29− 1.01 · 0.28 = n+ 0.01 · 29− 1.01 · 1.4

4 + 1
≤ (1 + 0.01) · (n− 2 · f̂(5− 1))

and, for k = 2,

n · (n− 1) = n2 − n < n2 − 2.8

4
· n+

1.96

16
=

(
n− 1.4

4

)2

=

(
n− 2 · 0.7

5− 2 + 1

)2

.

For k = 3, 4, it holds because the additional factors are n−k+1
n−2·f̂(5−k)

< 1.

With similar arguments one can prove

(2) n·(n−1)·...·(n−k+1)

(n−2·f̂(6−k))k
< 1 for k ∈ {2, 3, 4, 5}.

For n ≥ 29,

(3) n
n−2·f(6) < 1.01
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because n < n+ 0.29− 0.21 < n+ 0.1 · 29− 1.01 · 2 · 67 · 0.346 ≤ 1.01 · (n− 2 · f(6)).

Φ4
1(5) =

4∑
k=1

f̂(5− k)

f(5)
·
(
n

k

)
·

(
2 · f̂(5− k)

n− 2 · f̂(5− k)

)k
· e
−2·f̂(5−k)

1− 2·f̂(5−k)
k+1

=

4∑
k=1

f̂(5− k)

f(5)
· n · (n− 1) · ... · (n− k + 1)

k!
· (2 · f̂(5− k))k

(n− 2 · f̂(5− k))k
· e
−2·f̂(5−k)

1− 2·f̂(5−k)
k+1

(1)
<

4∑
k=1

f̂(5− k)

f(5)
· (1 + δk) · (2 · f̂(5− k))k

k!
· e
−2·f̂(5−k)

1− 2·f̂(5−k)
k+1

After applying f(5) = 67 · 0.345 and f̂(5 − k) = 0.7
5−k+1 for k ∈ {1, 2, 3, 4} and after

computing the sum with a computer program, we get:

Φ4
1(5) < 0.1583

Φ5
2(6) =

5∑
k=2

f̂(6− k)

f(6)
·
(
n

k

)
·

(
2 · f̂(6− k)

n− 2 · f̂(6− k)

)k
· e
−2·f̂(6−k)

1− 2·f̂(6−k)
k+1

=

5∑
k=2

f̂(6− k)

f(6)
· n · (n− 1) · ... · (n− k + 1)

k!
· (2 · f̂(6− k))k

(n− 2 · f̂(6− k))k
· e
−2·f̂(6−k)

1− 2·f̂(6−k)
k+1

(2)
<

5∑
k=2

f̂(6− k)

f(6)
· (2 · f̂(6− k))k

k!
· e
−2·f̂(6−k)

1− 2·f̂(6−k)
k+1

Again, we apply f(6) = 67 · 0.346 and f̂(6− k) = 0.7
6−k+1 for k ∈ {2, 3, 4, 5} and compute

the sum with a computer program. The result is:

Φ5
2(6) < 0.0592

Φ5
5(5) =

f̂(5− 5)

f(5)
·
(
n

5

)
·

(
2 · f̂(5− 5)

n− 2 · f̂(5− 5)

)5

· e
−2·f̂(5−5)

1− 2·f̂(5−5)
5+1

=
1

f(5)
·
(
n

5

)
·
(

2

n− 2

)5

· e
−2

1− 2
6

<
1

67 · 0.345
· 25

5!
· 3 · e−2

2

=
32 · 3 · e−2

67 · 0.345 · 120 · 2
< 0.1779
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Φ6
6(6) =

f̂(6− 6)

f(6)
·
(
n

6

)
·

(
2 · f̂(6− 6)

n− 2 · f̂(6− 6)

)6

· e
−2·f̂(6−6)

1− 2·f̂(6−6)
6+1

=
1

f(6)
·
(
n

6

)
·
(

2

n− 2

)6

· e
−2

1− 2
7

<
1

67 · 0.346
· 26

6!
· 7 · e−2

5

=
64 · 7 · e−2

67 · 0.346 · 720 · 5
< 0.1628

Φ1
1(6) =

f̂(6− 1)

f(6)
·
(
n

1

)
·

(
2 · f̂(6− 1)

n− 2 · f̂(6− 1)

)1

· e
−2·f̂(6−1)

1− 2·f̂(6−1)
1+1

=
f(6)

f(6)
· n · 2 · f(6)

n− 2 · f(6)
· e
−2·f(6)

1− f(6)

(3)
< 1.01 · 2 · f(6) · e

−2·f(6)

1− f(6)

= 1.01 · 2 · 67 · 0.346 · e−2·67·0.346

1− 67 · 0.346
< 0.1897

5.4.4 Lemmas Used for Proving H2(t)

Lemma 5.4.20. Assume ` ≥ 5. Fix an integer constant λ ≥ 2. For all k ∈ {λ, ..., `+ 1} it holds

that (
6 · f̂(`+ 1− k)

k

)k
≤ n−0.8·λ

for sufficiently large n.

Proof. Define c(`) := 6 · 67 · 0.34`+2 and recall that f̂(i) ≤ h(i + 1) = 67 · 0.34i+1 for

i ∈ 0, ..., `− 2 (see Definition 5.4.5 and Observation 5.4.7). Instead of the original function we

consider

w(k) :=

(
c(`) · 0.34−k

k

)k
=

(
6 · 67 · 0.34`+2−k

k

)k
≥

(
6 · f̂(`+ 1− k)

k

)k

and show w(k) ≤ n−0.8·λ. For this we regard w(k) as a continuous function on the interval

(0,∞) ⊂ R and perform a curve sketching. In order to identify the extrema we derive w(k) and
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obtain:

w′(k) =

(
c(`)k

kk · 0.34k2

)′
=

c(`)k · ln(c(`)) · kk · 0.34k
2 − c(`)k · kk · 0.34k

2 · (ln(k) + 1 + 2 · k · ln(0.34))

(kk · 0.34k2)2

=
c(`)k · ln(c(`))− c(`)k · (ln(k) + 1 + 2 · k · ln(0.34))

kk · 0.34k2

=

(
c(`)

k · 0.34k

)k
· (ln(c(`))− ln(k)− 1− 2 · k · ln(0.34))

w′(k) = 0 is fulfilled if and only if g(k) := ln(c(`))− ln(k)− 1− 2 · k · ln(0.34) = 0. Since

ln(c(`)) − 1 − 2 · k · ln(0.34) is linear in k and ln(k) is a strictly concave function, there are at

most two solutions. Let ε > 0, ε→ 0 and ψ →∞, then:

g(ε) = ln(c(`))− ln(ε)− 1− 2 · ε · ln(0.34) → ∞

g(1) = ln(6 · 67 · 0.34`+2)− ln(1)− 1− 2 · 1 · ln(0.34)

= ln(6 · 67) + (`+ 2) · ln(0.34)− 1− 2 · ln(0.34)

< 7.16− 1.07 · (`+ 2) ≤ 7.16− 1.07 · (5 + 2) < 0

g(ψ) = ln(c(`))− ln(ψ)− 1− 2 · ψ · ln(0.34)

> ln(c(`))− 1− ln(ψ) + 2.14 · ψ → ∞

Since g(k) is continuous on (0,∞), g(k) and, thus, w′(k) must have a root in the interval

(0, 1]. Because of the gradients at ε and 1, w(k) must have a maximum there. The second

extremum is a minimum in the interval (1,∞). It may or may not be in the given domain

[λ, ` + 1]. In any case, restricted to [λ, ` + 1], w(k) is maximal at one of the boundaries. And

since ` = Θ(ln(n)) (which can be derived from Definition 5.4.1), it follows that, for all integers

k ∈ {λ, ..., `+ 1}, some constant c and sufficiently large n,

w(k) ≤ max{w(λ), w(`+ 1)} ≤ max

{(
6 · h(`+ 2− λ)

λ

)λ
,

(
6 · h(1)

`+ 1

)`+1
}

≤ max

{(
6 · n−0.9

λ · 0.34λ−2

)λ
,

(
6 · 67 · 0.34

c · ln(n)

)c·ln(n)
}

≤ max

{(
6

λ · 0.34λ−2

)λ
· n−0.9·λ, 1650.83·ln(n) · n−0.83·ln ln(n)

}
< n−0.8·λ
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Lemma 5.4.21. Let i ∈ {5, ..., `+ 1}, then

t+i∑
k=1

∑
b∈Bi,k

Pr [Zb,i,k = 1 ] ≤
i∑

k=1

f̂(i− k) · n ·Pr

[
B

(
2

n
· f̂(i− k), n

)
≥ k

]
.

For λ ≥ 2 and sufficiently large n,

t+`+1∑
k=λ

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ] ≤ n−0.8·λ+1.

The probability that any bin receives a ball with height at least `+ 1 is bounded by

t+`+1∑
k=0

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ] ≤ n−0.9.

Proof. First we bound the probability for a bin to get the next ball. Let b ∈ Bi,k, 0 < k < i

(where the Bi,k are defined in Definition 5.4.8). The probability for b to be chosen is 1
n . The

probability that any bin on the same level or higher is chosen is bounded by f̂(i−k)·n
n = f̂(i− k)

(see Observation 5.4.6). Since every ball has two choices, the probability pi,k for b to get the ball

is

pi,k ≤
1

n
· f̂(i− k) + f̂(i− k) · 1

n
=

2

n
· f̂(i− k).

For all b ∈ Bi,k, k ≥ i, the probability pi,k to get the ball is bounded by

pi,k ≤
2

n
=

2

n
· f̂(0).

For any bin b ∈ Bi,0, let pi,0 be the maximal probability for b to be chosen. Then

pi,0 ≤ pi,1.

Now, for each bin b ∈ Bi,k, 0 ≤ k ≤ t+ i, we can upper-bound the probability for the event

Zb,i,k = 1 (that b receives at least one ball from batch t with height at least t+ i):

Pr [Zb,i,k = 1 ] ≤


Pr [B(n, pi,1) ≥ 1 ] ≤ Pr

[
B
(
n, 2

n · f̂(i− 1)
)
≥ 1

]
for k = 0

Pr [B(n, pi,k) ≥ k ] ≤ Pr
[
B
(
n, 2

n · f̂(i− k)
)
≥ k

]
for 1 ≤ k ≤ i

Pr [B(n, pi,k) ≥ k ] ≤ Pr
[
B
(
n, 2

n · f̂(i− i)
)
≥ i
]

for k > i
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Define B̃i,1 = Bi,1 ∪Bi,0. Then

1∑
k=0

∑
b∈Bi,k

Pr [Zb,i,k = 1 ] ≤ |B̃i,1| ·Pr

[
B

(
n,

2

n
· f̂(i− 1)

)
≥ 1

]
.

Define B̃i,i = ∪t+ik=iBi,k. Then

t+i∑
k=i

∑
b∈Bi,k

Pr [Zb,i,k = 1 ] ≤ |B̃i,i| ·Pr

[
B

(
n,

2

n
· f̂(i− i)

)
≥ i
]
.

For 1 < k < i, define B̃i,k = Bi,k and observe that
∑i
k=1 |B̃i,k| = n and that, for 1 ≤ k ≤ i,

|B̃i,k| ≤ f̂(i− k) · n (see Definition 5.4.5 and Observation 5.4.6).

The first inequality stated in the lemma follows from:

t+i∑
k=1

∑
b∈Bi,k

Pr [Zb,i,k = 1 ] ≤
t+i∑
k=0

∑
b∈Bi,k

Pr [Zb,i,k = 1 ]

≤
i∑

k=1

|B̃i,k| ·Pr

[
B

(
n,

2

n
· f̂(i− k)

)
≥ k

]

≤
i∑

k=1

f̂(i− k) · n ·Pr

[
B

(
n,

2

n
· f̂(i− k)

)
≥ k

]

For the proofs of the second and the third statement in the lemma, we can reuse the analysis

of the first one. Here, i is set to `+ 1.

t+`+1∑
k=λ

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ] ≤
`+1∑
k=λ

|B̃`+1,k| ·Pr

[
B

(
n,

2

n
· f̂(`+ 1− k)

)
≥ k

]

=

`+1∑
k=λ

|B̃`+1,k| ·
n∑
j=k

(
n

j

)
·
(

2

n
· f̂(`+ 1− k)

)j
·
(

1− 2

n
· f̂(`+ 1− k)

)n−j

≤
`+1∑
k=λ

|B̃`+1,k| ·
(
n

k

)
·
(

2

n
· f̂(`+ 1− k)

)k

≤
`+1∑
k=λ

|B̃`+1,k| ·
(e · n

k

)k
·
(

2

n
· f̂(`+ 1− k)

)k

≤
`+1∑
k=λ

|B̃`+1,k| ·

(
6 · f̂(`+ 1− k)

k

)k
(L.5.4.20)

≤
`+1∑
k=λ

|B̃`+1,k| · n−0.8·λ ≤ n−0.8·λ+1

In particular, for λ = 3,

t+`+1∑
k=3

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ] ≤ n−1.4.
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This can be used to show the last inequality:

t+`+1∑
k=0

∑
b∈B`+1,k

Pr [Zb,`+1,k = 1 ] ≤
`+1∑
k=1

|B̃`+1,k| ·Pr

[
B

(
n,

2

n
· f̂(`+ 1− k)

)
≥ k

]

≤ n−1.4 +

2∑
k=1

|B̃`+1,k| ·Pr

[
B

(
n,

2

n
· f̂(`+ 1− k)

)
≥ k

]

≤ n−1.4 +

2∑
k=1

f̂(`+ 1− k) · n ·

(
6 · f̂(`+ 1− k)

k

)k

≤ n−1.4 +

2∑
k=1

f(`+ 2− k) · n ·
(

6 · f(`+ 2− k)

k

)k
≤ n−1.4 + f(`+ 1) · n · 6 · f(`+ 1) + f(`) · n ·

(
6 · f(`)

2

)2

≤ n−1.4 + 6 ·
(σ
n

)2

· n+ 9 ·
(
n−0.9

)3 · n ≤ n−1.4 + 6 · σ2 · n−1 + 9 · n−1.7 ≤ n−0.9

5.5 Larger Values of d

Considering the results for d-choice balls-into-bins games one would assume the batched proto-

col to be monotone in the same sense that non-batched protocols are: The more choices we have

per ball, the better the final load distribution. Surprisingly this does not seem to be the case. The

experiment charted in Figure 5.1 shows how the gap between maximum and average load as a

function of d. The rapid decrease from d = 1 to d = 2 is followed by a seemingly logarithmic

increase.

The experiments fix n = 1, 000 bins and allocate 1, 000 batches with 1, 000 balls each (a

total of 1, 000, 000 balls). Each data point is actually the average of five individual experiments.

Notice that the y-axis is logarithmically scaled. The tall peak on the left corresponds to d = 1,

the single-choice process.

One explanation of this observed phenomenon may be that bins that fall behind will have a

relatively high probability to receive many balls from the next batch. For example, let d = Θ(n).

All balls of the first batch find the bins empty, and the allocation is stochastically equivalent to

the single-choice game. This implies that expectedly about ne bins remain empty. With the next

batch almost all balls will have at least one of these bins among their d choices and allocate to

one of them. The balls of the third batch will then mainly commit to the remaining bins of load 0

and bins of load 1. And so on.

For n = d = 25 and m = 20 · n, the process is traced in Table 5.1. One can clearly see that

98



www.manaraa.com

5.6 Conclusions

 4

 8

 16

 32

 64

 128

 0  100  200  300  400  500  600  700  800  900  1000

m
ax

-a
vg

 lo
ad

d

n=1,000 after 1,000 batches

"bib.out"
log_{1.26}(d)
log_{1.17}(d)

Figure 5.1: Gap between maximum and average load as a function of d.

the least loaded bins often receive so many balls that they top all other bins. The same effect is

observable for smaller d, but since a bin’s probability to be among the choices of a ball is smaller,

the increase is not as extreme.

5.6 Conclusions

In this chapter we have analysed GREEDY[2] in a dynamic parallel environment and showed that

the gap between maximum and average load stays O(ln(n)) w.v.h.p. if the batch size equals the

number of bins n and if the number of balls m is polynomially bounded in n. Our simulations

suggest that this gap grows with the number of choices d. This is surprising because in other

models applying GREEDY[d] in the heavily-loaded case [8, 94, 85] the maximum load decreases

with d.

The main open problem is the generalisation to arbitrary m. Considering the analyses in

[8, 94, 85], proving and applying a short memory lemma seems to be a promising approach.

Furthermore, it would be interesting to analyse the game for d > 2.
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allocation process. In Proceedings of the 6th Annual European Symposium on Algorithms,
ESA ’98, pages 417–428, London, UK, 1998. Springer-Verlag.

[2] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Rasmussen. Parallel
randomized load balancing. In Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, STOC ’95, pages 238–247, New York, NY, USA, 1995. ACM.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. In
Proceedings of the 26th ACM Symposium on Theory of Computing (STOC), pages 593–
602, 1994.

[4] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM
J. Comput., 29:180–200, September 1999.

[5] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17:525–532,
November 1973.
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[91] R. von Mises. Über aufteilungs- und besetzungswahrscheinlichkeiten. Revue de la Faculté
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